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Agenda

Logistic Regression

Odds vs. Probabilities

Maximum Likelihood Estimation

Probit
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Why Logit?

An alternative to the linear probability model

Constraints the range of  to plausible values (between 0 and 1).

Accounts for error heteroskedasticity in estimating standard errors.

ŷ
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Binary Dependent Variable

Consider the following model:

Problem: Heart Attack takes on binary values of 0 (no heart attack) and 1
(heart attack)

Goal: rather than fitting a line, fit a curve such that the possible values are
contrained between 0 and 1.

HeartAttack = β0 + β1Aspirin + u
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Goal
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Need to Transform Y

While Heart Attack is binary, the odds of having a heart attack, , are
continuous and take on values between 0 and , 

O
+∞ 0 < O < +∞
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Calculating Odds

Heart Attk No Heart Attk Total

Aspirin 104 10933 11037

Placebo 189 10845 11034

Total 293 21778 22071

O(HA|Aspirin) = = 0.0095
104

10933

O(HA|¬Aspirin) = = 0.0174
189

10845
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Need to Transform Y

Even better, the log(odds of heart attack) are also continuous and take on
values between  and .

If we transform our DV from Heart Attack to log(Odds of Heart Attack), we
can use OLS to estimate it, then apply a reverse transformation to
interpret the results:

−∞ +∞

log(Odds of HA) = β0 + β1Aspirin
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Calculating Odds

Can also calculate odds from probabilities:

And probabilities from odds:

This is the formula to convert the results of the  regression
to probabilities.

P(HA|Aspirin) = = 0.0094
104

11037

P(HA|¬Aspirin) = = 0.0171
189

11034

O(HA|Aspirin) = = & =
P(HA|Aspirin)
P(¬HA|Aspirin)

P(HA|Aspirin)
1 − P(HA|Aspirin)

0.0094
1 − 0.0094

P(HA|Aspirin) = = = 0.0094
O(HA|Aspirin)

1 + O(HA|Aspirin)
0.0095

1 + 0.0095

logged(odds)
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Logistic Regression

Or, in general terms:

log(O(HA|Asp)) = log( ) = β0 + β1Aspirin

O(HA|Asp) = = e(β0+β1Aspirin)

P(HA|Asp) =

P(¬HA|Asp) = 1 −

P(HA|Asp)
1 − P(HA|Asp)

P(HA|Asp)
1 − P(HA|Asp)

e(β0+β1Aspirin)

1 + e(β0+β1Aspirin)

e(β0+β1Aspirin)

1 + e(β0+β1Aspirin)

P(Y = 1|X) =   P(Y = 0|X) = 1 −
e(β0+β1X)

1 + e(β0+β1X)

e(β0+β1X)

1 + e(β0+β1X)
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Example 2: Effect of GRE Scores on Admission
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Effect of GRE Scores on Admission

Suppose we want to estimate the following model:

Problem: how can we find  and ?

P(Admit=1|GRE) = logit(α + β1GRE)

α β1
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Maximum Likelihood Estimation

[1] Write out the probability for each observation (called "likelihood"):

[2] The joint probability (called "the joint likelihood") of all the probabilities
(assuming independent observations) is the product of these probabilities:

∏ p
yi
i (1 − pi)(1−yi)
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Likelihood
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Maximum Likelihood Estimation

where 

Unlike with OLS, where we calculated  using the formulae we derived,
we find  using numerical optimization (essentially by guessing).

To help computer optimizers (the product of  can become very small),
we take advantage of the fact that the maximum of the product and the
logged product are the same, and take the log of the joint likelihood:

∏ p
yi
i (1 − pi)(1−yi),

pi = ,e(β0+β1xi)

1+e(β0+β1xi)

βk
βk

pi

log(∏ p
yi
i

(1 − pi)(1−yi)) =∑ yilog(pi) +∑ (1 − yi)log(1 − pi),
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A Latent Variable Model for Binary VariablesA Latent Variable Model for Binary Variables
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Your Turn

Using R, the z-table, or Google, find the p-values that correspond to the
following z-scores: -3,-2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3. What do these
values tell you? Use these values to sketch (yes, on paper with a pencil!) the
cumulative density function for the normal distribution.
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Normal CDF
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Logistic CDF
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Both

20 / 48



Another Way to Think of BRMs

Suppose there is an unobserved or latent variable  ranging from  to
 that generates the observed .

Observations with larger values of  are observed as , while those
with smaller values of  are observed as .

E. g., consider college admissions decisions or civil wars

Assume that the latent  is linearly related to the observed s through
the structural model:

y∗ −∞
+∞ y

y∗ y = 1
y∗ y = 0

y∗ x

y∗
i = xxiββ + ϵi
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A Latent Variable Model

The latent  is linked to the observed binary variable  by the measurement
equation:

where  is the threshold or cutpoint. Assume .

Since  is unobserved, we use ML estimation.

Assume  and that the error is normally distributed with
variance .

This assumption is arbitrary, but it is necessary only for estimation.
The final results do not depend on it.

y∗ y

yi = {
1  if y∗

i
> τ

0  if y∗
i ≤ τ

τ τ = 0

y∗

E(ϵ|x) = 0
V ar(ϵ|x) = 1
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A Latent Variable Model
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A Latent Variable Model

On average, we observe  when  and  otherwise.

Even when , it is possible to observe , especially is
the error is large and negative.

Since  when :

Note that we must change the direction of the inequality in step 4,
because the normal cdf expresses the probability of a variable being less
than some value.

Note that  stands for the normal cdf.

Congratulations, we just derived a probit regression.

y = 1 E(y∗|x) > 0 y = 0

E(y∗|x) > 0 y = 0

y = 1 y∗ > 0

P(y = 1|x) = P(y∗ > 0|x)
= P(xββ + ϵ > 0 | x)
= P(ϵ > −xββ | x)
= P(ϵ ≤ xββ | x)
= Φ(xββ)

Φ(xββ)
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Plot of  and P(y=1| x) in the BRMy∗
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Probit Likelihood

Define  as the probability of observing whatever value of  was actually
observed for a given observation:

Then, as before, the likelihood is the product of these probabilities:

pi y

pi = {
P(y = 1 | xi)  if yi = 1 is observed

1 − P(y = 1 | xi)  if yi = 0 is observed

L(ββ|y,Xy,X) =
N

∏
i=1

pi

=∏
y=1

P(y = 1 | xi)∏
y=0

1 − P(y = 1 | xi)

=∏
y=1

Φ(xxiββ)∏
y=0

[1 − Φ(xxiββ)]
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Log-Likelihood

Taking a log of the likelihood gives:

Amemiya (1985, 273-4) proves that under plausible conditions, the
likelihood function is globally concave which ensures the uniqueness of
ML estimates.

These estimates are consistent, asymptotically normal, and asymptotically
efficient.

lnL(β|y,Xβ|y,X) =∑
y=1

lnΦ(xxiββ) +∑
y=

ln[1 − Φ(xxiββ)]
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Lab: Maximum Likelihood EstimationLab: Maximum Likelihood Estimation

28 / 4828 / 48



Effect of GRE Scores on Admission

Suppose we want to estimate the following model:

Why did we omit Rank1?

The data are available at "https://stats.idre.ucla.edu/stat/data/binary.csv"

Admit = logit(α + β1GRE + β2GPA + β3Rank2

+ β4Rank3 + β5Rank4)
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Maximum Likelihood Estimation (by hand)

mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv"

all<- NULL

y<- mydata$admit

x<-mydata$gre

alpha<- 0 #we don't know so we'll try different guesses

beta<- 0

log_odds<- alpha +beta*x

odds<- exp(log_odds)

prob<-odds/(1+odds)

log_like<- y*log(prob)+(1-y)*log(1-prob)

sum_ll<- sum(log_like)

results<- cbind.data.frame("alpha"=alpha, "beta"=beta, "sum_ll"=sum_l

all<- rbind(all, results)
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Maximum Likelihood Estimation

library(tidyverse)

library(magrittr)

mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv"

#Program the likelihood:

MyLogLike<-function(Y,X,par){

xbeta<-X%*%par

p<-exp(xbeta)/(1+exp(xbeta))

loglike<-Y*log(p)+(1-Y)*(log(1-p))

sum_ll= -sum(loglike)

return(sum_ll)

}
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Use -optim- to Find 

X<- mydata %>% mutate(cons=1, rank2=as.numeric(rank==2), 

                      rank3=as.numeric(rank==3), 

                      rank4=as.numeric(rank==4)) %>% 

  select(cons, gre, gpa, rank2, rank3, rank4) %>% as.matrix()

Y<-mydata$admit

par=rep(0,6)

myres <- optim(par,            # starting value for prob

   MyLogLike,      # the log-likelihood function

   method="BFGS",               # optimization method

   hessian=TRUE,                # return numerical Hessian

   control=list(reltol=1e-10),    # maximize instead of minimize

   X=X,Y=Y)                 # the data

myres$par

#Check 

summary(m1<-glm(admit~gre+ gpa+ factor(rank), data=mydata, 

                family=binomial))

βj
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OLS Using Numerical Optimization

Though OLS coefficients can be found using an analytical solution
, they may also be found using numerical optimization.

To demonstrate, consider the following model:

These data can be accessed from the package "wooldridge" using -
data("twoyear")-.

β = (X ′X)−1X ′Y

log (wage) = α + β1jc + β2univ + β3exper + ϵ
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OLS Using Numerical Optimization

library(wooldridge)

data("twoyear")

m2<-lm(lwage~jc+univ+exper, data=twoyear)

summary(m1)

#Program the likelihood:

myOLS<-function(pars,X,Y) {

 xbeta<-X%*%pars

 SSE<-sum((Y-xbeta)^2)

return(SSE)

}

X<-twoyear  %>% mutate(cons=1) %>% select(cons,jc,univ,exper) %>% 

  as.matrix()

Y<-twoyear$lwage

pars=rep(0,4)

myres <- optim(pars,            # starting value for prob

              myOLS,      # the function to optimize

              method="BFGS",               # optimization method

              Y=Y, X=X)                 # the data
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Interpreting Logit Results

Logit coefficients tell the direction of the effects, but not their magnitude.

In fact, the values of the logit (and probit) coefficients are artificially
induced by the model assumptions about the mean and variance of .

If we change these assumptions, the coefficient estimates will change
too.

However, the estimates of probability of  and  are invariant
to the model assumptions. Hence, always interpret coefficient effects in
logit (and probit) by calculating predicted probabilities or related
quantities (example to follow).

As with OLS, can perform a significance hypothesis test by dividing the
coefficient by it's standard error.

ϵ

Y = 1 Y = 0
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Interpreting Logit Results

mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv"

summary(m1<-glm(admit~gre+ gpa+ factor(rank), data=mydata, 

                family=binomial))

## 

## Call:

## glm(formula = admit ~ gre + gpa + factor(rank), family = binomial, 

##     data = mydata)

## 

## Coefficients:

##                Estimate Std. Error z value Pr(>|z|)    

## (Intercept)   -3.989979   1.139951  -3.500 0.000465 ***

## gre            0.002264   0.001094   2.070 0.038465 *  

## gpa            0.804038   0.331819   2.423 0.015388 *  

## factor(rank)2 -0.675443   0.316490  -2.134 0.032829 *  

## factor(rank)3 -1.340204   0.345306  -3.881 0.000104 ***

## factor(rank)4 -1.551464   0.417832  -3.713 0.000205 ***

## ---

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## 

## (Dispersion parameter for binomial family taken to be 1)

## 

##     Null deviance: 499.98  on 399  degrees of freedom
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Interpreting Logit Results

Calculate and plot predicted probabilities of admission (first example),
varying GPA and school rank. Hold GRE at its mean of 500.

mycoeff<-m1$coeff

gpa<-seq(from=min(mydata$gpa),to=max(mydata$gpa),by=.1)

#Calculate the probability of an admission for a student with average

p1<-(exp(mycoeff[1]+500*mycoeff[2]+gpa*mycoeff[3]))/(1+exp(mycoeff[1]

#Calculate the probability of an admission for a student with average

p2<-(exp(mycoeff[1]+500*mycoeff[2]+gpa*mycoeff[3]+mycoeff[4]))/(1+exp

#Calculate the probability of an admission for a student with average

p3<-(exp(mycoeff[1]+500*mycoeff[2]+gpa*mycoeff[3]+mycoeff[5]))/(1+exp

#Calculate the probability of an admission for a student with average

p4<-(exp(mycoeff[1]+500*mycoeff[2]+gpa*mycoeff[3]+mycoeff[6]))/(1+exp

#Plot these predicted probabilities:

ggplot() + geom_line(aes(x=gpa, y=p1), ) + geom_line(aes(x=gpa,y=p2))

                   labs(y = "P(Admissions)") +theme_bw()
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Effect of GPA on Admissions by Rank
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Example 2

On January 28, 1986, the NASA shuttle orbiter mission STS-51-L and the
tenth flight of Space Shuttle Challenger (OV-99) broke apart 73 seconds
into its flight, killing all seven crew members, which consisted of five
NASA astronauts and two payload specialists.

The spacecraft disintegrated over the Atlantic Ocean, off the coast of Cape
Canaveral, Florida, at 11:39 EST (16:39 UTC).

Disintegration of the vehicle began after an O-ring seal in its right solid
rocket booster (SRB) failed at liftoff.

Due to McAuliffe’s (first teacher in space) presence on the mission, NASA
arranged for many US public schools to view the launch live on NASA TV.

Source: Wikipedia
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Why Did the O-ring Fail?

What causes O-ring failures during space shuttle launches?

Research Hypothesis: Temperature at launch affects the probability of o-
ring failures.
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Data on Space Shuttle Launches

##    flight_date failure temp

## 1   1981-04-12       0   66

## 17  1981-11-12       1   70

## 2   1982-03-22       0   69

## 3   1982-11-11       0   68

## 4   1983-04-04       0   67

## 5   1983-06-18       0   72

## 6   1983-08-30       0   73

## 7   1983-11-28       0   70

## 18  1984-02-03       1   57

## 19  1984-04-06       1   63

## 20  1984-08-30       1   70

## 8   1984-10-05       0   78

## 9   1984-11-08       0   67

## 22  1985-01-24       2   53

## 10  1985-04-12       0   67

## 11  1985-04-29       0   75

## 12  1985-06-17       0   70

## 13  1985-07-29       0   81

## 14  1985-08-27       0   76

## 15  1985-10-03       0   79

## 23  1985-10-30       2   75

## 16  1985-11-26       0   76

## 21 1986-01-12 1 58
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Your Turn

Estimate a logistic regression of failures on temperature.

In order to interpret the result, calculate and plot the expected probability
of an o-ring failure by temperature. Overlay your plot with a scatterplot of
the data.

What is your conclusion? What would you say if I told you that the
Challenger was launched at 31 degrees F?
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Your Turn 1

Open the data from the social pressure experiment.

Estimate a linear probability model and a logistic regression. Calculate the
effect of social pressure on the probability of voting from the logistic
regression. How does this quantity compare to the coefficient on the same
variable from the libear probability model.

Which model do you prefer and why?
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Your Turn 2

Write a maximum likelihood function to estimate a probit.

Calculate and plot predicted probabilities of admission (first example),
varying GPA and school rank. Hold GRE at its mean of 500. Do this "by
hand", do not use the -predict- function.

45 / 48



Your Turn 2: Michelin Star Restaurants

The data "MichelinNY.csv" contains information on the price, food, decor,
and service ratings on 164 NY restaurants, and whether the restaurant
received a Michelin star. Open the data and estimate the following model
(can use the -glm- function):

Looking only at the regression table, what factors affect the probability of
getting a Michelin star?

Plot the predicted probabilities of getting a Michelin star by food rating
for three price points (Mean, Mean-1sd, Mean+1sd). Hold Service and
Decor at their median values.

Michelin Star = Probit(α + β1Price + β2Food +

β3Service + β4Decor + ϵ)
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Your Turn 3

Open the data on space shuttle launches.

Estimate the effect of temperature at launch on the probability of at least
one o-ring failure using a probit. Estimate the same probability using a
logit.

Plot the predicted probability of a failure by temperature from both
models (overlay them on the same graph). How do they compare?

Use the -predict- function to add confidence bands.
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