
Advanced Network AnalysisAdvanced Network Analysis

Inferential Network Modeling with the Social RelationsInferential Network Modeling with the Social Relations
ModelModel

Shahryar Minhas [s7minhas.com]Shahryar Minhas [s7minhas.com]

1 / 521 / 52

Goals for today

Basics of network modeling
Social Relations Model

2 / 52

Goals of statistical network modeling

How do features drive our data analysis?

How can we describe features of social relations?

How can we identify nodes with similar network roles?

How do we relate the network to covariate information?

3 / 52

What we want to account for when modeling

Many networks exhibit the following features:

Homophily by actor attributes

Higher propensity to form ties between actors with similar attributes

Degree heterogeneity among actors

Sociability, Popularity

Reciprocity of ties

Higher order dependencies

We'll start to get to this next week

4 / 52

Statistical models for social networks

A social network is defined as a set of n entities (e.g., social "actors") and a
relationship (e.g., friendship) between each pair of entities

Often is called a sociomatrix

And, graphical representation of is a sociogram

Diagonal typically undefined or 0 (i.e.,)
 represents a random network with nodes as the actors and edges

the relationship

The basic problem of stochastic modeling is to specify a distribution for ,
i.e.,

Y := [Yij]n×n

Y

Yii = NA
Y

Y
Pr(Y = y)

5 / 52

Inferential Goals in the Regression Framework

 measures , is a vector of explanatory variables

Consider a basic (generalized) linear model:

What do we want this model to provide?:

A measure of association between and : ,

Imputations of missing observations:

A probabilistic description of network features: ,

yij i → j xij

yij ≈ βTxij + ϵij

X Y β̂ se(β̂)

Pr(y14|Y ,X)

g(Ỹ) Ỹ ≈ Pr(Ỹ |Y ,X)

6 / 52

What's Wrong with GLM?

GLM:

Networks typically show evidence against independence of

Not accounting for dependence can lead to:

biased effects estimation

uncalibrated confidence intervals

poor predictive performance

inaccurate description of the event of interest

We've been hearing this concern for decades now:

yij ∼ βTXij + eij

{eij : i ≠ j}

7 / 52

Social Relations Model

David Kenny was interested "systematically studying what we think
others are like, how we see ourselves and how we think others see us"
i.e., interpersonal perceptions (ugly cover, good book)

8 / 52

Sender heterogeneity

An actor can induce dependence across its "recievers." Thus values across a
row, say , may be more similar to each other than other values in
the adjacency matrix because each of these values has a common sender .

{yij, yik, yil}
i

9 / 52

Receiver heterogeneity

Additionally, values across a column, say , may be more similar
to each other than other values in the adjacency matrix because each of these
values has a common receiver .

{yji, yki, yli}

i

10 / 52

Sender-Receiver Covariance

Actors who are more likely to send ties in a network may also be more likely
to receive them.

11 / 52

Reciprocity

Values of and may be statistically dependent. Dyads might exhibit high
reciprocity because there is a tendency for actors to treat each other
similarily, i.e., "respond in kind" to these behaviors.

yij yji

12 / 52

Lets work through an example

load('preezeObjects/trade_for_ols.rda')

trade[1:3,]

Var1 Var2 trade polity.row polity.col conflicts distance shared_igos

2 ARG AUL 0.058 7.18 10 0 11.72 3.827

3 ARG BEL 0.247 7.18 10 0 11.31 3.917

4 ARG BNG 0.039 7.18 5 0 16.76 3.425

We want to fit the following linear model:

form = formula(

 trade ~

 polity.row + polity.col + conflicts + distance + shared_igos

)

form

trade ~ polity.row + polity.col + conflicts + distance + shared_igos

13 / 52

Lets hypothesize �rst

Lets interpret each parameter.

tradeij =
= β0+
= β1 × polity.rowi+
= β2 × polity.rowj+

= β3 × conflictsij + β4 × distanceij + β5 × shared_igosij
= ϵij

β

14 / 52

Lets estimate the model

ols = lm(form, data=trade)

summary(ols)$'coefficients'

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.069 0.172 0.399 0.69

polity.row 0.022 0.005 4.617 0.00

polity.col 0.027 0.005 5.759 0.00

conflicts 0.518 0.091 5.666 0.00

distance -0.042 0.006 -7.088 0.00

shared_igos 0.172 0.043 4.024 0.00

15 / 52

Lets go beyond stargazing

And conduct some residual diagnostics with network dependencies in
mind
We'll need to reorganize the residuals first

pull out errors from trade

trade$olsError = ols$residuals

construct sociomatrix out of errors

actors = unique(c(trade$Var1, trade$Var2))

n = length(actors)

E = matrix(NA, nrow=n,ncol=n, dimnames=list(actors,actors))

for(ii in 1:nrow(trade)){

 E[trade$Var1[ii], trade$Var2[ii]] = trade$olsError[ii] }

E[1:3,1:3]

ARG AUL BEL

ARG NA -0.6127548 -0.4568836

AUL -0.5698027 NA -0.1806427

BEL -0.4186733 -0.2084223 NA

16 / 52

Beyond stargazing ... are errors patternless?

We see strong evidence of structure in the errors that can at least partly be
explained by reciprocity

cor(c(E), c(t(E)), use='complete.obs')

[1] 0.9109391

17 / 52

Beyond stargazing ... sender/receiver patterns?

Structure in the errors by sender and receiver heterogeneity:

rowErr = apply(E, 1, mean, na.rm=TRUE)

colErr = apply(E, 2, mean, na.rm=TRUE)

sort(rowErr)[1:3]

sort(colErr)[1:3]

ARG AUL BEL

-0.212 0.025 -0.008

ARG AUL BEL

-0.203 -0.023 -0.016

sd(rowErr)

[1] 0.4654568

sd(colErr)

[1] 0.4318027
18 / 52

Beyond stargazing ... sender/receiver patterns?

Lets visualize these patterns:

errDF = melt(E) ; errDF = na.omit(errDF)

errDF$Var1 = factor(errDF$Var1, levels=names(sort(rowErr)))

rowErrorGG = ggplot(errDF, aes(x=Var1,y=value)) +

 geom_boxplot() + geom_jitter(alpha=.3) +

 xlab('') + ylab('Residual by Sender') +

 theme(

 axis.ticks=element_blank(),

 panel.border=element_blank(),

 axis.text.x=element_text(angle=45,hjust=1)

)

19 / 52

Beyond stargazing ... sender/receiver patterns?

Ditto for receiver

errDF$Var2 = factor(errDF$Var2, levels=names(sort(colErr)))

colErrorGG = ggplot(errDF, aes(x=Var2,y=value)) +

 geom_boxplot() + geom_jitter(alpha=.3) +

 xlab('') + ylab('Residual by Receiver') +

 theme(

 axis.ticks=element_blank(),

 panel.border=element_blank(),

 axis.text.x=element_text(angle=45,hjust=1)

)

20 / 52

Beyond stargazing ... sender/receiver patterns? YES

library(gridExtra)

grid.arrange(rowErrorGG, colErrorGG, nrow=2)

21 / 52

Is there always structure in residuals?

Are the patterns that we've been discovering in the residuals here likely
under independence?
Or put another way what if we had specified the model correctly?

set up some fake dyadic data

simData = expand.grid(letters,letters, stringsAsFactors = FALSE)

remove i-i observations

simData = simData[simData$Var1 != simData$Var2,]

add x1

set.seed(6886)

simData$x1 = rnorm(nrow(simData))

add x2

simData$x2 = rnorm(nrow(simData))

create a y

simData$y = -1 + 2*simData$x1 + .5*simData$x2 + rnorm(nrow(simData))

run model

olsSim = lm(y ~ x1 + x2, data=simData)

22 / 52

Is there always structure in residuals?

Check for evidence of structure by reciprocity and sender/receiver effects.

23 / 52

What's the point?

GLM: ... when errors are not independent, we get

biased effects estimation
uncalibrated confidence intervals

Basically, our parameter estimates for and particularly the confidence
intervals will be wrong ... this is like stargazing on a cloudy day

yij ∼ βTXij + eij

β

24 / 52

What about model �t in the context of dependencies?

So we likely need an approach that accounts for the structure in the
residuals ... but how do we know we got it right?
Whenever we evaluate model fit we start by choosing some measures of
fit
In our case we are going to focus on the ability of the model to capture:

variation across rows means (out-degrees)
variation across column means (in-degrees)
correlation within dyads (i.e., reciprocity)

25 / 52

Model �t and dependencies

Okay, so we have our measures, how do we want to evaluate how well a
given model does
Simulation!

We are going to simulate multiple set of predictions from our model
Calculate our measures of fit for each set of predictions from the
model
And compare the simulated values against the observed data

26 / 52

Simulate predictions from a linear model

We are going to simulate 1000 for each parameter from our model
Then multiply the simulated model estimates with the observed data,
And end with a matrix of predicted values, one column for each
simulation

library(MASS)

betaDraws = MASS::mvrnorm(n = 1000, mu = coef(ols), vcov(ols))

xMatrix = data.matrix(cbind(1, trade[,names(coef(ols))[-1]]))

preds = xMatrix %*% t(betaDraws)

dim(preds)

[1] 870 1000

β
X

27 / 52

Calculating model �t

Lets calculate model fit for one set of predictions. First we need to organize
the data.

extract one prediction from simulated model

trade$yhat = preds[,1]

get actor vector

actors = sort(unique(c(trade$Var1, trade$Var2)))

n=length(actors)

organize adjacency matrix

yhatMat = matrix(NA, nrow=n, ncol=n, dimnames=list(actors,actors))

for(ii in 1:nrow(trade)){

 yhatMat[trade$Var1[ii],trade$Var2[ii]] = trade$yhat[ii]

}

28 / 52

Before proceeding

Lets organize our dv into an adjacency matrix as well using the actors vector
that we created

organize dv into adjacency matrix

Y = matrix(NA, nrow=n, ncol=n, dimnames=list(actors,actors))

for(ii in 1:nrow(trade)){

 a1 = trade$Var1[ii]

 a2 = trade$Var2[ii]

 val = trade$trade[ii]

 Y[a1,a2] = val }

29 / 52

Calculating model �t

Now lets calculate fit:

variation across rows means (out-degrees)

sd(apply(yhatMat, 1, mean, na.rm=TRUE))

[1] 0.1279117

sd(apply(Y, 1, mean, na.rm=TRUE)) # Y is a sociomatrix of trade$trade

[1] 0.4906692

30 / 52

Calculating model �t

Now lets calculate fit:

variation across column means (in-degrees)

sd(apply(yhatMat, 2, mean, na.rm=TRUE))

[1] 0.1860768

sd(apply(Y, 2, mean, na.rm=TRUE))

[1] 0.4784861

31 / 52

Now lets do this for all predictions

32 / 52

What's the point? II

GLM: ... when errors are not independent, we get

poor predictive performance
inaccurate description of the event of interest

Basically, our models can't actually reproduce the observed data

Lets account for the structure.

yij ∼ βTXij + eij

33 / 52

Conceptual question ...

Why are the errors not independent?

34 / 52

Social Relations Model

This brings us to the following model (Warner et al. 1979; Li & Loken
2002):

 baseline measure of network activity (for the purpose of regression we

turn this into)
 residual variation that we will use the SRM to decompose

yij = μ+ eij

eij = ai + bj + ϵij

{(a1, b1),… , (an, bn)} ∼ N(0, Σab)
{(ϵij, ϵji) : i ≠ j} ∼ N(0, Σϵ), where

Σab = (
σ2
a σab

σab σ2
b

) Σϵ = σ2
ϵ (

1 ρ

ρ 1
)

μ

βTX
eij

35 / 52

Social Relations Model: Nodal E�ects

row/sender effect () & column/receiver effect ()
Modeled jointly to account for correlation in how active an actor is in
sending and receiving ties

yij = μ+ eij

eij = ai + bj + ϵij

{(a1, b1),… , (an, bn)} ∼ N(0, Σab)
{(ϵij, ϵji) : i ≠ j} ∼ N(0, Σϵ), where

Σab = (
σ2
a σab

σab σ2
b

) Σϵ = σ2
ϵ (

1 ρ

ρ 1
)

ai bj

36 / 52

Social Relations Model: Nodal Variance

 and capture heterogeneity in the row and column means
 describes the linear relationship between these two effects (i.e.,

whether actors who send [receive] a lot of ties also receive [send] a lot of
ties)

yij = μ+ eij

eij = ai + bj + ϵij

{(a1, b1),… , (an, bn)} ∼ N(0, Σab)
{(ϵij, ϵji) : i ≠ j} ∼ N(0, Σϵ), where

Σab = (
σ2
a σab

σab σ2
b

) Σϵ = σ2
ϵ (

1 ρ

ρ 1
)

σ2
a σ2

b

σab

37 / 52

Social Relations Model: Dyadic Variance

 captures the within dyad effect

Second-order dependencies are described by
Within dyad correlation, aka reciprocity, represented by

yij = μ+ eij

eij = ai + bj + ϵij

{(a1, b1),… , (an, bn)} ∼ N(0, Σab)
{(ϵij, ϵji) : i ≠ j} ∼ N(0, Σϵ), where

Σab = (
σ2
a σab

σab σ2
b

) Σϵ = σ2
ϵ (

1 ρ

ρ 1
)

ϵij
σ2
ϵ

ρ

38 / 52

Polity of and Number of conflicts from to
Log(Distance) between and
Log Number of common IGOs
between and

What can we do with this?

Let's model trade using the SR-R-M framework

Variables we might want to include:

yi,j = βT
d
xd,i,j + βT

s xs,i + βT
r xr,j + ai + bj + ϵi,j

i j i j
i j

i j

39 / 52

Probit Regression Framework

Hoff 2005; Hoff et al. 2013; Minhas et al. 2018

Threshold model: linking latent to

Social relations model: inducing network covariance

Estimation:

MCMC algorithm in which we iteratively sample from the full conditionals
of each parameter of interest

Z Y

yij = 1(zij > 0)
zij = βTxij + eij

eij = ai + bj + ϵij
{(a1, b1),… , (an, bn)} ∼ N(0, Σab)
{(ϵij, ϵji)i ≠ j} ∼ N(0, Σϵ)

40 / 52

Y an n x n square relational
matrix
Xdyad an n x n x pd array of
dyadic covariates
Xrow an n x pr array of sender
covariates
Xcol an n x pc array of receiver
covariates
rvar TRUE/FALSE: fit sender
random effects
cvar TRUE/FALSE: fit receiver
random effects
dcor TRUE/FALSE: fit dyadic
correlation

model one of "nrm", "bin", "ord",
"cbin", "frn", "rrl"
intercept TRUE/FALSE: fit with
an intercept?
symmetric TRUE/FALSE: are
relations directed?
nscan number of iterations of
the markov chain
burn burn in for the chain
odens output density
R dimension of multiplicative
effects

Running the model in R

MCMC routine:

Arguments:

41 / 52

Inputting nodal covariates

Nodal covariates should be structured as:

an matrix of covariates, where corresponds to number of actors
and covariates
In the directed case, row and nodal covariates need to be inputted
separately into Xrow and Xcol

Xn[1:10,]

pop gdp polity

ARG 3.548755 5.864710 7.18

AUL 2.895912 6.011414 10.00

BEL 2.314514 5.370685 10.00

BNG 4.789989 5.177956 5.00

BRA 5.070915 6.963597 8.00

CAN 3.377588 6.531009 10.00

CHN 7.091101 8.114522 -7.00

COL 3.652734 5.324862 7.82

EGY 4.063542 5.371521 -3.55

FRN 4.082272 7.101956 9.00

n× p n
p

42 / 52

conflicts

ARG AUL BEL

ARG NA 0 0

AUL 0 NA 0

BEL 0 0 NA

distance

ARG AUL BEL

ARG NA 11.72 11.31

AUL 11.72 NA 16.71

BEL 11.31 16.71 NA

shared_igos

ARG AUL BEL

ARG NA 3.83 3.92

AUL 3.83 NA 4.02

BEL 3.92 4.02 NA

Inputting dyadic covariates

Dyadic covariates should be structured as:

an array of covariates, where now corresponds to the
number of dyadic covariates

Xd[1:3,1:3,]

n× n× p p

43 / 52

Lets �rst �t a Bayesian linear regression

fitOLS = ame(Y=Y,

 Xdyad=Xd, # incorp dyadic covariates

 Xrow=Xn, # incorp sender covariates

 Xcol=Xn, # incorp receiver covariates

 symmetric=FALSE, # tell AME trade is directed

 intercept=TRUE, # add an intercept

 model='nrm', # model type

 rvar=FALSE, # sender random effects (a)

 cvar=FALSE, # receiver random effects (b)

 dcor=FALSE, # dyadic correlation

 R=0, # we'll get to this later

 nscan=10000, burn=5000, odens=25,

 plot=FALSE, print=FALSE, gof=TRUE

)

44 / 52

OLS vs Bayesian linear regression?

load('preezeObjects/ameresults.rda')

summary(ols)$'coefficients'

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.06878972 0.172325639 0.3991845 6.898559e-01

polity.row 0.02196448 0.004757679 4.6166382 4.491947e-06

polity.col 0.02729898 0.004740507 5.7586619 1.178005e-08

conflicts 0.51754450 0.091336744 5.6663340 1.987264e-08

distance -0.04165499 0.005876931 -7.0878809 2.829161e-12

shared_igos 0.17240405 0.042842108 4.0241729 6.218859e-05

summary(fitOLS)

Regression coefficients:

pmean psd z-stat p-val

intercept 0.060 0.175 0.343 0.731

.row 0.022 0.005 4.219 0.000

.col 0.027 0.005 5.591 0.000

conflicts.dyad 0.526 0.090 5.865 0.000

distance.dyad -0.041 0.006 -6.837 0.000

shared igos dyad 0 173 0 042 4 154 0 000
45 / 52

GOF analysis

gofPlot(fitOLS$GOF, symmetric=FALSE)

46 / 52

Running SRM model with covariates

fitSRM = ame(Y=Y,

 Xdyad=Xd, # incorp dyadic covariates

 Xrow=Xn, # incorp sender covariates

 Xcol=Xn, # incorp receiver covariates

 symmetric=FALSE, # tell AME trade is directed

 intercept=TRUE, # add an intercept

 model='nrm', # model type

 rvar=TRUE, # sender random effects (a)

 cvar=TRUE, # receiver random effects (b)

 dcor=TRUE, # dyadic correlation

 R=0, # we'll get to this later

 nscan=10000, burn=5000, odens=25,

 plot=FALSE, print=FALSE, gof=TRUE

)

objects returned in fitSRM

names(fitSRM)

[1] "BETA" "VC" "APM" "BPM" "U" "V" "UVPM" "EZ" "YPM" "GOF"

47 / 52

SRM results

summary(fitSRM)

Regression coefficients:

pmean psd z-stat p-val

intercept -2.893 0.579 -4.994 0.000

.row 0.007 0.022 0.299 0.765

.col 0.014 0.020 0.686 0.493

conflicts.dyad 0.079 0.038 2.078 0.038

distance.dyad -0.037 0.006 -6.324 0.000

shared_igos.dyad 1.014 0.135 7.525 0.000

Variance parameters:

pmean psd

va 0.453 0.124

cab 0.392 0.116

vb 0.414 0.118

rho 0.782 0.020

ve 0.156 0.010

48 / 52

Capturing network features?

gofPlot(fitSRM$GOF, symmetric=FALSE)

49 / 52

Trace plots

paramPlot(fitSRM$BETA)

50 / 52

SRM variance parameters

grid.arrange(paramPlot(fitSRM$VC),

 arrangeGrob(abPlot(fitSRM$APM, 'Sender Effects'),

 abPlot(fitSRM$BPM, 'Receiver Effects')), ncol=2)

51 / 52

What are we missing?

Homophily: "birds of a feather flock together"
Stochastic equivalence: nothing as pithy to say here, but this model
focuses on identifying actors with similar roles

Now we'll start to build on what we have so far and find an expression for :γ

yij ≈ βTXij + ai + bj + γ(ui, vj)

52 / 52

