
PLS 900/803 Bayesian AnalysisPLS 900/803 Bayesian Analysis
Shahryar Minhas [s7minhas.com]Shahryar Minhas [s7minhas.com]

1 / 1051 / 105

Readings to go with this lecture

Two books that I highly recommend, McElreath's Statistical Rethinking (linked
below) provides a great and friendly introduction to Bayesian analysis. A
much more comprehensive book comes is Bayesian Data Analysis from
Gelman et al (also linked below). For those of you interested in Bayes, I
recommend delving into each. For our purposes the below is all that goes with
this lecture:

Statistical Rethinking Ch 4 and 5

Advanced:

Bayesian Data Analysis Ch 10 and 11
Conceptual Introduction to Hamiltonian Monte Carlo

Other:

High level overview
Bayes and Qual Approaches I
Bayes and Qual Approaches II

2 / 105

https://github.com/Booleans/statistical-rethinking/blob/master/Statistical%20Rethinking%202nd%20Edition.pdf
http://www.stat.columbia.edu/~gelman/book/BDA3.pdf
https://arxiv.org/pdf/1701.02434.pdf
https://www.annualreviews.org/doi/abs/10.1146/annurev.polisci.7.012003.104706
https://www.cambridge.org/core/journals/political-analysis/article/abs/simple-bayesian-inference-for-qualitative-political-research/CB75ACD52AF02FE6E83EC79B6BD39986
https://www.cambridge.org/core/journals/american-political-science-review/article/abs/mixing-methods-a-bayesian-approach/BB1DFC2FDA3D7F2224F3341042FEA5F4

MLE Synopsis: From random variables to models

Suppose we are studying outcome and we decide it is is distributed

Stochastic component:
Systematic component:

This formulation encompasses all the models in this course.

For example, you are used to seeing linear regression written this way:

In our notation, this is equivalent to assuming is the Normal distribution:

y f

y ∼ f(μ,α)
μ = g(X,β)

yi = Xiβ + ϵi

ϵi ∼ fN(0,σ2)

f(⋅)

yi ∼ fN(μi,σ2)
μi = Xiβ

3 / 105

From models to inference

It's not possible to infer from alone
If we assume a distribution for , we can solve for ...

This famous result is known as Bayes rule, it shows how to write a conditional
probability in terms of its inverse

P(θ|y) y
y P(y|θ)

P(a|b) P(b|a)

4 / 105

From models to inference

So to infer the probability of the parameters given the data , we need to
know and a priori

We can rewrite Bayes rule to replace P(y) with other quantities:

But is not known objectively

P(θ|y) = (Bayes Rule)
P(θ)P(y|θ)

P(y)

θ y
P(θ) P(y)

P(θ)

5 / 105

From models to inference

 is not known objectively, but we need it to compute

This creates a fork in the road of inference, with two major schools of thought:

Bayesian inference:

Make a subjective guess of the a priori
Then use to calculate

Likelihood inference:

Give up on calculating to avoid making subjective guesses of
Instead focus on making inferences directly from

P(θ|y) = (Bayes Rule)
P(θ)P(y|θ)

P(y)

P(θ) P(θ|y)

P(θ)
P(y|θ) P(θ|y)

P(θ|y) P(θ)
P(y|θ)

6 / 105

What to do?

One option ...

7 / 105

Or ...

Lets just go with Fisher (1922) and say:

Brilliant guy ... ugly views ... on your own time:
https://njoselson.github.io/Fisher-Pearson/ (maybe reading about him will
make you want to be Bayesian :))

P(y|θ) → L(θ|x)

8 / 105

https://njoselson.github.io/Fisher-Pearson/

Fisher's justification

Fisher (1922):

 = 1 since the data has already occurred
, which is equivalent to putting a finite uniform prior on over

its support

Thus:

P(y|θ) → L(θ|x)

P(y)
P(θ) = 1 θ

P(θ|y) = (Bayes Rule)

P(θ|y) = P(y|θ) (Bayes Rule)

P(θ)P(y|θ)
P(y)

1
1

9 / 105

Implications of this choice?

Likelihood of the parameters given the data is proportional to the
probability of the data given the parameters

We can't objectively state the probability of a particular given , we can

objectively state the relative likelihood of over some other
 is a surface in space showing which parameter values are more

likely than others
We can look at the profile of the likelihood function against each

parameter in to see which s are likely

L(θ|x) ∝ P(y|θ)

θ̂ y

θ̂ θ̂
′

L θ

θ θ̂

10 / 105

General steps for finding MLE

Assuming a statistical model parameterized by a fixed and unknown , the L(
) is the probability of the observed data considered as a function of .

The process goes as follows:

Identify the PMF or PDF.
Create the likelihood function from the joint distribution of the observed
data.
Change to the log for convenience.
Take the first derivative with respect to the parameter of interest.
Set equal to zero.
Solve for the MLE.

θ
θ θ

11 / 105

Measuring uncertainty of the MLE

The first derivative measures slope and the second derivative measures
curvature or concavity of the function at a given point.
If the second derivate is negative the slope of the tangent line must be
decreasing MLE is a maximum. 0 The second derivative also give you
information on the acceleration or the rate of change with respect to your
estimate.
The more peaked the function (the greater rate of change) at the MLE, the
more "certain" the data are about this estimator.
Poisson example:

→

ℓ(θ|x) = −n +
n

∑
i=1

xi

ℓ(θ|x) = (ℓ(θ|x)) = −θ−2
n

∑
i=1

xi

d

dθ

1
θ

d2

dθ2

d

dθ

d

dθ

12 / 105

Measuring uncertainty of the MLE

The negative inverse of the expected value of the second derivative is the
variance of the MLE.
If we take the square root, we get the SE of the MLE.

The more peaked the function (the greater rate of change) at the MLE, the
more "certain" we are about this estimator. Notice the inverse
relationship between the second derivate and the variance.

V ar(θ̂) = (− E[ℓ(θ|x)])

−1
d2

dθ2

13 / 105

To summarize

The score function is the first derivative of the log-likelihood:

At the maximum, the second derivative of the log-likelihood is negative, so we

define the curvature of at as , where,

A large curvature of , the observed Fisher Information, is associated with
a tight or strong peak, intuitively indicating less uncertainty about .

Because evaluates the MLE, it is a number rather than a function.

Notice that the standard error for is calculated using the Fisher Information.

Score function → S(θ) = ℓ(θ)
d

dθ

θ̂ I(θ)

(observed) Fisher Information → I(θ) = − ℓ(θ)
d2

dθ2

I(θ̂)
θ

I(θ)

θ̂

14 / 105

A reading list to keep in mind

General MLE (apart from the book)
Myung (2003)

Interaction
Ai and Norton (2003)
Berry et al. (2009)

Separation
Zorn (2005)
Rainey (2016)

Simulation
Tomz et al. (2000)
Hanmer & Kalkan (2013)

Model Assessment
Perils of policy by p-value
Cross-Validation
Separation Plot

15 / 105

https://faculty.psy.ohio-state.edu/myung/personal/mle.pdf
https://www.sciencedirect.com/science/article/pii/S0165176503000326
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1540-5907.2009.00429.x
https://s3.amazonaws.com/academia.edu.documents/30767301/Zorn.pdf?response-content-disposition=inline%3B%20filename%3DA_solution_to_separation_in_binary_respo.pdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWOWYYGZ2Y53UL3A%2F20191028%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20191028T123216Z&X-Amz-Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=d86e4216e49c1fbb2cf53e5a28b39f6149b1897bf06d19e5e5f2aea569d6417b
http://www.carlislerainey.com/papers/separation.pdf
https://web.stanford.edu/~tomz/pubs/ajps00.pdf
https://gvpt.umd.edu/sites/gvpt.umd.edu/files/pubs/Hanmer%20and%20Kalkan%20AJPS%20Behind%20the%20Curve.pdf
https://journals.sagepub.com/doi/10.1177/0022343309356491
http://www.marcel-neunhoeffer.com/pdf/papers/pa_cross-validation.pdf
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1540-5907.2011.00525.x

Bayesian Inference

16 / 105

Switching over to Bayes ...

In the frequentist paradigm, we took a particular approach to thinking
about randomness when trying to learn about an unknown parameter
using observed data

 is an unknown constant
 are random variables

 is our estimator of - it's a function of random random variables
Probabilities reflect behavior in repeated samples

θ
Y

θ
Y
θ̂ θ

17 / 105

Bayesian inference

Bayesian inference takes a different approach to the problem. Rather
than treating as a constant, we consider it to be random as well!

Probabilities reflect beliefs about a particular quantity
 denotes our prior beliefs about the value of

 is the posterior distribution given the observed data. This is
our target of inference

 are still random variables...but the posterior distribution
conditions on them
We derive the posterior using Bayes rule

θ

f(θ) θ
f(θ|Y)

Y

f(θ|Y) =
f(Y|θ)f(θ)

f(Y)

18 / 105

Bayesian inference

The denominator can be written as an integral over all of the possible
values of (marginalizing over)

So often we'll write the posterior distribution up to a proportionality
constant as

θ θ

f(Y) = ∫ f(Y, θ)dθ = ∫ f(Y|θ)f(θ)dθ

f(θ|Y)

posterior

∝ f(Y|θ)

likelihood

× f(θ)

prior

19 / 105

Bayesian inference

In addition to the posterior distribution of the parameters , we'll often
want to generate "forecasts" of an out-of-sample conditional on what
we have observed

This involves integrating over the posterior values of the parameter

Sound scary? Nah ... all this means is that after forming our beliefs
(posterior distribution) about some parameters based on the data we've
seen, we don't just make a single prediction using the "most likely"
parameter value.
Instead, we make a bunch of predictions considering all the plausible
parameter values (based on our belief) and then average these
predictions to get a more informed, well-rounded forecast.

θ~
Y

θ

f(~
Y |Y) = ∫ f(~

Y , θ|Y)dθ

= ∫ f(~
Y |θ,Y)f(θ|Y)dθ

= ∫ f(~
Y |θ)f(θ|Y)dθ

20 / 105

Application: Predicting Elections

We'd like to predict U.S. House of Representatives elections using data
from the prior Presidential election at the county level

Pettigrew (2018) assembled the 2018 US House returns at the county
level
Available as us-house-wide.csv on D2L

For each county , , we observe:

: The number of votes for the Democratic candidate county
: The number of votes cast in total in that county

Let's start by building a simple model and going from there.

Assume is a draw from a binomial distribution with a total number
of of trials and "success" probability .

 comes from a Beta distribution with hyperparameters and

i i ∈ {1, 2, … ,N}

Yi
ni

Yi
Ki π

πi α0 β0

Yi ∼ Binomial(ni,πi)

πi ∼ Beta(α0,β0)

21 / 105

Plate notation

A common method of writing statistical models is via plate notation
These concisely encode independence and dependence assumptions
across parameters and data.

22 / 105

Features of a Bayesian model I

There are four types of variables in a Bayesian model
Observed Data: Variables that have a probability distribution but on
whose observed values we condition -
Known Constants: Fixed quantities that do not have probability
distributions (e.g. regressors or other features of the nodes) - , ,

,
Deterministic quantities: Transformations of other variables
Latent parameters: Variables that have a probability distribution
that we do not observe -

Yi

ni N
α0 β0

πi

23 / 105

Features of a Bayesian model II

Sometimes the known constants are actually known by us (e.g. or)
and in other cases they are assumed to be known

These are typically parameters of the prior distribution which are
called hyperparameters (here: and)
The hyperparameters govern the distribution of the prior -- crucially,
its mean and variance.

In Bayesian inference, we are interested in obtaining either the posterior
of the latent parameters or integrating them out (in the latter case, they
are sometimes referred to as "nuisance" parameters)

Here, we want to obtain
When writing the posterior, we'll often omit the implicit conditioning
on the observed constants.

N ni

α0 β0

f(πi|Y)

24 / 105

The Likelihood

Remember the posterior distribution is proportional to the likelihood
times the prior

First, let's derive the likelihood
Since the are independent conditional on , we can write:

Next, for , we have since only depends on .
That's just a constant term and drops out of the posterior distribution,
leaving

f(πi|Y)

posterior

∝ f(Y|πi)

likelihood

× f(πi)

prior

f(Y|πi)
Yi πi

f(Y|πi) =
N

∏
j=1

f(Yj|πi)

j ≠ i f(Yj|πi) = f(Yj) Yj πj

f(πi|Y) = f(πi|Yi) ∝ f(Yi|πi)f(πi)

25 / 105

The Likelihood and Prior

What's ? We've defined it as the binomial PMF

What about the prior? ? We've chosen the beta distribution

The Beta distribution has some notable features.
Two parameters: and (can be thought of as pseudo counts of
successes and failures, respectively)
It's mean:

It's variance

f(Yi|πi)

f(Yi|πi) = ()πYi
i (1 − πi)ni−Yi

ni

Yi

f(πi)

f(πi) = π
α0−1
i

(1 − πi)β0−1Γ(α0)Γ(β0)
Γ(α0 + β0)

α0 β0

E[πi] = α0

α0+β0

V ar(πi) = α0β0

(α0+β0)2(α+β+1)

26 / 105

The Beta Distribution

Let's see how the parameters influence the shape of the beta. :

:

Beta(2, 2)

Beta(100, 200)

27 / 105

Importance of Prior Distributions

Priors reflect external knowledge or beliefs.

Can stabilize estimates in small samples.

Can also bias results if chosen inappropriately.

28 / 105

Influence of prior distribution

29 / 105

Choosing a prior

There are two ways to think about choosing a prior distribution

Informative prior - Use the prior to encode our existing beliefs about
the parameter
Uninformative/Diffuse prior - Pick a prior that will have the least
impact on the posterior distribution

We also need to consider the shape of the prior distribution

Why did we pick the Beta distribution?
Because it has a special property when combined with a binomial
likelihood. It is a conjugate prior to the binomial likelihood.

Conjugate prior: A prior distribution is conjugate to a particular
likelihood if the posterior distribution is of the same form as the prior

 is beta; is binomial; is beta

f(πi)

f(θ) f(Y|θ) f(θ|Y)

30 / 105

Conjugate Priors

Advantages:

Analytical tractability (can find the posterior without numerical
methods).
Computational efficiency.

Common conjugate priors for Gaussian likelihood: Normal (for mean) and
Inverse Gamma (for variance).

Lots of other examples here.

31 / 105

https://en.wikipedia.org/wiki/Conjugate_prior

Hyperparameters

Priors themselves have parameters (called hyperparameters).

For example, a normal prior has mean and variance.

Hyperparameters can be:

Fixed based on strong beliefs or external information.
Estimated from the data (empirical Bayes).

32 / 105

Choosing a prior

In our application, must be between and , so we already have some
information.

One possible choice for an uninformative prior is the uniform distribution
- each parameter value is equally likely:

In settings where the parameter takes on values , we could
still consider a "uniform" prior but it will be improper as it's not a
density that integrates to

For , the uniform prior corresponds to the
distribution

Originally proposed by Bayes.
This flat prior assumes that all probabilities are equally plausible ...
i.e., we should get a result similar to the MLE.

πi 0 1

f(πi) ∝ 1

(−∞, ∞)

1

πi ∈ (0, 1) Beta(1, 1)

33 / 105

Bayesian updating

Now that we have defined our model: variables, likelihood, and prior; we
can feed it with our data to obtain the posterior distribution.
The process of going from the prior to the posterior is called Bayesian
updating.

We can view the prior as our initial belief of the possible values that our
parameter of interest (in this case probability of democrat winning) can
take.

Then we collect some data and update our prior using the likelihood to
obtain the posterior.

This process can be repeated iteratively; the posterior becomes a new
prior, we collect more data and update our posterior.

In practice, we feed the data only once to our statistical model, but it is
important to think that Bayesian updating is an iterated learning process.

So how do we do it?

34 / 105

The posterior density

We've mentioned that is a beta distribution -- let's show that!

Plug in the densities (we'll drop any multiplicative constants that don't
depend on)

Adding the exponents

And we can recognize (lol) this as the kernel of the beta distribution with
parameters and (see here).

f(πi|Yi)

f(πi|Y) ∝ f(Yi|πi)f(πi)

πi

f(πi|Y) ∝ [πYi
i (1 − πi)ni−Yi] × [πα0−1

i (1 − πi)β0−1]

f(πi|Y) ∝ π
Yi+α0−1
i

(1 − πi)ni−Yi+β0−1

α = Yi + α0 β = ni − Yi + β0

35 / 105

https://en.wikipedia.org/wiki/Beta_distribution

Calculating the posterior density

The posterior distribution encodes updated plausibilities (or beliefs) for
all parameter values conditioned on the data.

Essentially, we really are just applying Bayes formula.

The nice thing about working with conjugate priors is since we know the
form of the posterior distribution the denominator will go to 1, since
we're just integrating a PDF over its whole parameter space.

Importantly, it is not always possible to compute the posterior analytically
unless we constrain our prior to special forms (i.e., conjugate priors) that
are easy to do some algebra with.

But bear in mind that in many of the interesting models where we will
really want to apply Bayes we will need to approximate the posterior
using computational techniques such as Markov Chain Monte Carlo.

The example we're working with so far is just one of the cases where we
can solve for the posterior analytically.

36 / 105

Sampling to summarize

In the theoretical world (when the posterior has a closed mathematical
form), answering questions about point estimates and uncertainty
intervals implies calculating yucky integrals BUT practically all we really
have to do is basic summary statistics on samples from the posterior

Once we have a posterior distribution, we typically will report
summaries in the style of our typical frequentist point and interval
estimates.

Note, however, that these have a different interpretation in the
Bayesian framework.

Point summaries

Posterior Mean:

Posterior Mode:

Credible interval: A credible interval is a range of values
that contains of the posterior density

θ̂ = E[θ|Y]
θ̂ = arg maxθ p(θ|Y)

95% (l95,h95)
95%

∫
h95

l95

f(θ|Y)dθ = .95 37 / 105

Point estimates in a Bayesian setting

The idea of point estimation in Bayesian settings is to summarize the
posterior with a single value

The three most common options are:

mode: which is the value with the highest posterior probability, also
known as the maximum a posteriori (MAP) estimate
mean: just take the average of the samples from the posterior
median: just take the median of the samples from the posterior

For many of the parameters that you will be typically estimating via Bayes
each of these three options will yield very similar answers

38 / 105

Credible vs confidence intervals

Credible intervals resemble very much the confidence intervals we saw in
OLS and MLE

The interpretations are very different though

A confidence interval is a region that after infinitely repeating the
data sampling experiment will contain the true parameter with a
certain frequency
A credible interval instead is simply a range of values that we believe
our parameter can take with a certain probability

39 / 105

Quantities of interest

There is no one unique credible interval! As a result, there are a few
common choices for how to construct a credible interval

Highest Density interval (HDI) - no values outside of the interval
have higher density than values inside the interval

Equal-tailed interval (ETI) - the probability of being below the lower
limit is equal to the probability above the upper limit

40 / 105

Application

Let's take a look at the elections data.

elections <- read_csv("us-house-wide.csv")

One feature of this county-level House data is that because House districts
don't perfectly overlap counties, we have some county-district
combinations with very few voters!

allegan <- elections %>% filter(county == "Allegan")

print(allegan)

A tibble: 2 × 10

state county fipscode fipscode2 office district total.votes dem rep

<chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>

1 MI Allegan 26005 26005000… US Ho… 2 945 426 506

2 MI Allegan 26005 26005000… US Ho… 6 48295 17654 28257

MI-2 only has 945 votes from Allegan County.

41 / 105

Application

Let's get the posterior distribution for for MI-2 in Allegan County under
an uninformative uniform prior

mi2_allegan <- elections %>% filter(state=="MI"&county == "Allegan"&d

posterior_alpha <- mi2_allegan$dem + 1

posterior_beta <- mi2_allegan$total.votes - mi2_allegan$dem + 1

#

plot(density(rbeta(1000, posterior_alpha, posterior_beta)))

Plot the posterior

mi2 posterior <- ggplot() + xlim(.3, .5) + geom function(fun=dbeta,

πi

42 / 105

Application

We know the form of the beta mean, so our posterior mean estimate is

posterior_mean <- posterior_alpha/(posterior_alpha + posterior_beta)

posterior_mean

[1] 0.451

Note this corresponds to the MLE:

mi2_allegan$dem/mi2_allegan$total.votes

[1] 0.451

And we can obtain an equal-tailed 95% credible interval simply via the
quantile function

posterior_ci <- c(qbeta(.025, shape1=posterior_alpha, shape2=posterio

posterior_ci

[1] 0.419 0.483
43 / 105

Application

But we have some more information from the other counties in the
district

mi2 <- elections %>% filter(state=="MI" & district == 2)

mi2

A tibble: 8 × 10

state county fipscode fipscode2 office district total.votes dem rep

<chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>

1 MI Allegan 26005 26005000… US Ho… 2 945 426 506

2 MI Kent 26081 26081000… US Ho… 2 65089 31822 32182

3 MI Lake 26085 26085000… US Ho… 2 4620 1767 2730

4 MI Mason 26105 26105000… US Ho… 2 9880 4143 5514

5 MI Muskeg… 26121 26121000… US Ho… 2 67627 35685 30603

6 MI Newaygo 26123 26123000… US Ho… 2 20126 6798 12763

7 MI Oceana 26127 26127000… US Ho… 2 10651 4205 6218

8 MI Ottawa 26139 26139000… US Ho… 2 126525 46408 78454

What if we instead constructed our prior such that its mean was centered
on the average of all the other counties?

We can control the strength of the prior via the prior variance

44 / 105

Application

prior_mean <- sum(mi2 %>% filter(county != "Allegan") %>% pull(dem))/

factor of 1000 is arbitrary to make the distribution wide

prior_variance <- (prior_mean*(1-prior_mean))/1000

Convert these to alpha/beta:

meaning we are computing the hyperparameters based on a

desired mean and variance

prior_alpha <- (((1 - prior_mean)/prior_variance) - (1/prior_mean))*p

prior_beta <- prior_alpha*(1/prior_mean - 1)

45 / 105

Application

Let's plug-in the new prior parameters

posterior2_alpha <- mi2_allegan$dem + prior_alpha

posterior2_beta <- mi2_allegan$total.votes - mi2_allegan$dem + prior_

Plot the posterior

mi2_posterior2 <- ggplot() + xlim(.3, .5) + geom_function(fun=dbeta

 theme_bw() + xlab(expression(pi)) +

 ylab("Density") + geom_vline(xintercept=prior_mean, lty=2, lwd=1.5,

 geom_function(fun=dbeta, args=list(shape1=posterior2_alpha, shape2=

46 / 105

Application

Let's plug-in the new prior parameters

mi2_posterior2

47 / 105

Application

Our new posterior mean

posterior2_mean <- posterior2_alpha/(posterior2_alpha + posterior2_be

posterior2_mean

[1] 0.44

And 95% credible interval

posterior2_ci <- c(qbeta(.025, shape1=posterior2_alpha, shape2=poster

posterior2_ci

[1] 0.418 0.462

48 / 105

Application

The posterior mean can be thought of as a "weighted average" of the prior
mean and the MLE

The weights are controlled by the variance of the prior.
Can interpret the hyper-parameters for this case - and - as the
number of "previously observed" counts.

Stronger priors narrower credible intervals

But it takes a lot more data to move the posterior distribution from
the prior.

Often the prior serves to regularize our estimates

We want our estimates to be "pulled" towards a particular value if
there's very little data.
A common type of "regularizing" prior is designed to attenuate our
estimates to - we'll talk about this when we get to the last topic of
the course!

α0 β0

⇝

0

49 / 105

Connections with Frequentism/MLE

You'll notice that for the uninformative uniform prior, our posterior mode
is equivalent to the MLE

If ,

More generally, for most well-behaved priors and likelihoods, the
Bernstein-von Mises theorem states that as ...

...the posterior distribution will converge to a normal
distribution
...centered at the true parameter
...with variance-covariance matrix equal to the inverse Fisher
information

Essentially: In large samples, posterior distributions converge to the
sampling distribution of the MLEs

f(θ) ∝ 1 f(θ|Y) = f(Y|θ)

n → ∞

f(θ|Y)

θ0

50 / 105

Markov-Chain Monte Carlo

51 / 105

Markov-Chain Monte Carlo (MCMC)

In many settings, we have this problem in computing the posterior

The prior has a known distribution (sometimes up to a
proportionality constant)
The likelihood has a known distribution specified by our data-
generating process
In general, we write our model so that the joint density of the data and the
parameters factors very neatly

f(θ|Y) =

Easy!

f(Y|θ) ×

Easy!

f(θ)

f(Y)

HARD!

f(θ)

f(Y θ)

f(Y, θ) = f(Y|θ)f(θ)

52 / 105

Markov-Chain Monte Carlo (MCMC)

But is a tough to evaluate integral!

We've used the trick of having a conjugate prior which lets us know the
distribution of the posterior, in the application above we knew that the
posterior followed a Beta

f(Y)

f(Y) = ∫ f(Y, θ)dθ

53 / 105

MCMC Benefits/Costs

Benefits:

MCMC allows us to produce samples from the joint posterior without
maximizing anything and we'll be able to sample directly from the
posterior without assuming that it is coming from a specific
distribution
MCMC is why people use Bayes for everything from
multilevel/hierarchical modeling to text/network analysis

Costs:

Cost of this power is that it may take much (much, much, much ...)
longer for our estimation to complete

54 / 105

MCMC High level

The essence of MCMC is to produce samples from the posterior using only
the product of the likelihood and prior, which are always available to us
since we're specifying them

So by just evaluating the likelihood prior and without normalizing the
denominator, MCMC is supposed to allow us to generate random
representative values from the posterior distribution

This is awesome because computing that evidence term (denominator of
Bayes formula) is at times just not possible

×

55 / 105

MCMC ... a bit more formally

MCMC methods allow us to generate a sample of observations from the
target posterior even when we don't know it as long as we can evaluate a
function that is proportional to the posterior

Monte Carlo: Use repeated samples to obtain numeric
approximations of key quantities
Markov-Chain: The samples from the posterior are constructed via a
"chain" that has the Markov property

Our Goal: Generate a monte carlo sample of
arbitrary length such that the sequence of draws converges to a
stationary distribution that is the target posterior

This sample is a markov chain in that the distribution of the th
draw depends on the value of the th, but only on that past value

Important note: our samples from the target posterior will be dependent

{θ(1), θ(2), θ(3), …}

(i + 1)
i

f(θ(i+1)|Y, θ(i), θ(i−1), … , θ(1)) = f(θ(i+1)|Y, θ(i))

56 / 105

Metropolis Hastings Algorithim (a MCMC approach)
High Level I

Suppose an elected politician lives on a long chain of islands.

They are constantly traveling from island to island, wanting to stay in the
public eye.

At the end of a day they have to decide whether to:

stay on the current island
move to the adjacent island to the left
move to the adjacent island to the right

Their goal is to visit all the islands proportionally to their relative
population.

But they don't know the total population of all the islands.

They only know the population of the current island where they are
located.

They can also ask about the population of an adjacent island to which
they plan to move. 57 / 105

Metropolis Hastings Algorithim (a MCMC approach)
High Level II

Lets say this is a clever politician that paid attention in methods class and
they decide to use the Metropolis algorithm as a heuristic for traveling
across the islands (Metropolis et al 1953).

First, they flip a coin to decide whether to propose the adjacent island to
left or the adjacent island to the right.

If the proposed island has a larger population than the current island (
), then they go to the proposed island.

If the proposed island has a smaller population than the current island (
), then they go to the proposed island with probability

.

In the long run, the probability that the politician is on any one of the
islands exactly matches the relative population of the island!

Pproposed > Pcurrent

Pproposed < Pcurrent
Pproposed

Pcurrent

58 / 105

Metropolis Hastings Algorithim (a MCMC approach)
High Level III

Before talking about why this works lets reframe in teh context of our
actual problem, which is to draw samples from an unknown posterior
probability distribution

The "islands" in our objective are parameter values (and they need not
be discrete, but can instead take on a continuous range of values as usual)

The "population sizes" in our objective are the posterior probabilities (or
densities) at each parameter value:

The "days" in our objective are samples taken from the posterior
distribution.

The coin flip represents the proposal distribution,

The Metropolis algorithm will eventually give us a collection of samples
from the posterior.

We can then use these samples just the same as if we were sampling
directly from a posterior distribution.

θ

f(θ|data)

q(θ)

59 / 105

Metropolis Hastings Algorithim (a MCMC approach)
High Level IV

Now, let's try to understand why the algorithm works.

We are going to denote our target probability density from which we
want to draw samples as .

Bear in mind that is usually a posterior density .

Consider two adjacent positions and the probabilities of moving from one
to the other.

We'll see that the relative transition probabilities, between adjacent
positions, exactly match the relative values of the target density .

Extrapolate that result across all the positions, and you can see that, in the
long run, each position will be visited proportionally to its target value.

Suppose we are at position .

p(θ)

p(θ) f(θ|d)

p(θ)

θ

60 / 105

Metropolis Hastings Algorithim (a MCMC approach)
High Level V (eek)

The probability of moving to , denoted , is the
probability of proposing that move times the probability of accepting it if
proposed, which is:

On the other hand, if we are presently at position , the probability of
moving to is:

θ + 1 P(θ → θ + 1)

P(θ → θ + 1) = 0.5 × min(p(θ + 1)/p(θ), 1)

θ + 1
θ

P(θ + 1 → θ) = 0.5 × min(p(θ)/p(θ + 1), 1)

61 / 105

Metropolis Hastings Algorithim (a MCMC approach)
High Level V (eek)

The ratio of the transition probabilities is:

=

=

⎧⎪⎪
⎨
⎪⎪⎩

ifp(θ + 1) > p(θ)

ifp(θ + 1) < p(θ)

=

P(θ → θ + 1)
P(θ + 1 → θ)

0.5 × min(p(θ + 1)/p(θ), 1)
0.5 × min(p(θ)/p(θ + 1), 1)

1
p(θ)/p(θ+1)

p(θ+1)/p(θ)
1

p(θ + 1)
p(θ)

62 / 105

Metropolis Hastings Algorithim (a MCMC approach)
High Level VI

The equation on the previous slide tells us that during transitions back
and forth between adjacent positions, the relative probability of the
transitions exactly matches the relative values of the target distribution.

That might be enough to get the intuition that, in the long run, adjacent
positions will be visited proportionally to their relative values in the
target distribution.

If that's true for adjacent positions, then, by extrapolating from one
position to the next, it must be true for the whole range of positions.

In more mathematical terms, this means that the transition probabilities
form a Markov chain that has the target distribution as its equilibrium or
stationary distribution.

Hence, one can obtain a sample of the desired distribution by recording
states from the chain.

63 / 105

Metropolis-Hastings Algorithm ... more formally I

The foundational algorithm for generating MCMC samples is the
Metropolis-Hastings algorithm.

Crucially: We can sample from almost any distribution (though some
distributions are better than others)

The algorithm relies on two key concepts to generate another sample
 given the past sample value :

The proposal distribution - A probability distribution
that generates our "proposal" value
The acceptance probability - A calculation for the probability of
"accepting" the proposed value or rejecting it

θ(i+1) θ(i)

f(θ(i+1)|θ(i))

64 / 105

Metropolis-Hastings Algorithm ... more formally II

To generate the markov chain of samples from the target posterior
distribution , the Metropolis-Hastings
algorithm iterates between two steps:

1. Proposal: Conditional on the current value , generate a draw from
 where is the proposal distribution.

2. Accept/Reject: With probability , "accept" the proposal and set
 - otherwise "reject" and set

Intuitively - If the proposal distribution is symmetric...
...if the unnormalized posterior density is higher at the proposed
rather than the current location, always accept
...if the unnormalized posterior density is lower at the proposed
rather than current location, maybe accept

M
{θ(1), θ(2), θ(3), … , θ(M)}

θ θ∗

Q(θ∗|θ) Q
α

θ(i+1) = θ∗ θ(i+1) = θ

α = min{1, × }
f(Y|θ∗)f(θ∗)
f(Y|θ)f(θ)

Q(θ|θ∗)
Q(θ∗|θ)

65 / 105

Proposal Distribution
Our choice of governs how quickly the Markov Chain will "converge" to
the true posterior

We want to choose a proposal distribution that could "eventually"
propose each value in the domain of
We also want a proposal distribution that generates a high acceptance
probability

It is common to choose a proposal distribution that is symmetric:

Symmetric here just means that the suggestion for moving from one
point to another point is the same as the suggestion for moving in the
opposite direction.

For , common to propose from a
That is, from a normal distribution centered on the "current"
parameter with an arbitrarily chosen variance
This is symmetric since the chances of proposing from are the
same as the chances of proposing from

Q

θ

α

= 1
Q(θ|θ∗)
Q(θ∗|θ)

θ ∈ (−∞, ∞) θ∗ Normal(θ, Ω)

Ω
θ∗ θ

θ θ∗ 66 / 105

Back to the application

Let's go back to our posterior distribution for the Democratic vote share in
the part of MI-2 that is in Allegan County

Previously, we calculated the posterior directly since it was beta, but
suppose we couldn't?

67 / 105

Back to the application

Let's construct our MCMC sampler. First, let's choose a proposal
distribution

For , we could use a Beta, but the Beta isn't symmetric
 would generate a lot of bad proposals

Instead, let's transform to be unbounded. Define

We'll sample s and convert them back to when we evaluate the
likelihood and prior
An intuitive distribution would be the standard logistic
distribution centered on . It's symmetric!

πi ∈ (0, 1)
Uniform(0, 1)

πi θi = log()πi
1−πi

θ π

Q(θ∗|θ)
θ

68 / 105

Back to the application ... this gets dirty

set.seed(6886)

logistic <- function(x) 1/(1 + exp(-x)) # Helper Function

logit <- function(x) log(x/(1-x))

M <- 100000 # Number of MCMC samples

pi_mcmc <- rep(NA, M) # Vector to store our samples

pi_mcmc[1] <- .5 # Pick a starting value

69 / 105

Back to the application ... this gets dirty

for (i in 1:(M-1)){ # For i in 1:(M-1)

Step 1 - Proposal

 theta_i <- logit(pi_mcmc[i])

 theta_star <- rlogis(1, location = theta_i)

Step 2 - Accept/Reject

 lik_star <- dbinom(mi2_allegan$dem, mi2_allegan$total.votes, prob =

 prior_star <- dbeta(logistic(theta_star), shape1 = 1, shape2=1)

 lik_current <- dbinom(mi2_allegan$dem, mi2_allegan$total.votes, pr

 prior_current <- dbeta(logistic(theta_i), shape1 = 1, shape2=1)

 Q_star_current <- dlogis(theta_star, location=theta_i) # This is al

 Q_current_star <- dlogis(theta_i, location=theta_star)

#Assemble the acceptance ratio

 ar <- ((lik_star*prior_star)/(lik_current*prior_current))*(Q_curren

Choose to accept or reject

 accept <- rbinom(1,1,min(1,ar))

Store the next value

 pi_mcmc[i+1] <- logistic(theta_star)*accept + logistic(theta_i)*(1-

}

70 / 105

Back to the application ... evaluating the results

Let's first see how the chain progresses by generating the trace plot

plot(y=pi_mcmc, x=1:length(pi_mcmc), xlab="Iteration", ylab="pi", typ

You'll see that it takes a bit for the chain to reach the area of the posterior
with the most mass

If we started closer to the "mass" of the distribution, we would have
converged faster

In practice, we will throw away some number of our initial samples as a
burn-in period, since we know that the chain needs some time to reach
the stationary distribution.

Here we'll drop the first samples and keep the rest5000
71 / 105

Back to the application

Our ideal trace plots have no clear trends - in such a case, we consider the
chain to have reached its stationary distribution

pi_mcmc_use <- pi_mcmc[5000:M] # Toss our burn-in period

plot(y=pi_mcmc_use, x=1:length(pi_mcmc_use), xlab="Iteration", ylab="

Note that trace plots are diagnostics -- they don't prove that the chain has
"mixed," but a lot of jumps or stagnant periods would suggest that our
chain needs to run longer

72 / 105

Back to the application

Plot the histogram on top of the "true" distribution

mi2_mcmc <- data.frame(x=pi_mcmc_use) %>% ggplot(aes(x=x)) + theme_b

 ylab("Density")

mi2_mcmc

73 / 105

Back to the application

We can compute summaries like the posterior mean or a 95% credible
interval by taking summaries of the MCMC sample

posterior_mcmc_mean <- mean(pi_mcmc_use)

posterior_mcmc_mean

[1] 0.451

posterior_mean

[1] 0.451

74 / 105

Back to the application

We get very close to the true posterior (and can get closer with more
iterations)

posterior_mcmc_ci <- quantile(pi_mcmc_use, c(.025, .975))

posterior_mcmc_ci

2.5% 97.5%

0.418 0.482

posterior_ci

[1] 0.419 0.483

75 / 105

Multiple parameters

In this example, we've focused on estimating a single parameter. Suppose
instead we have parameters:

With multiple parameters, we'd need a multivariate proposal distribution
(like a multivariate normal)

But this can be hard and mixing is often very slow with multivariate
proposals.

Instead, we can use Gibbs sampling -- generating each update

conditional on the other current values of the other parameters

Importantly, if we can sample from the conditional distribution
 we can get proposals with acceptance probability 1

Even if we can't, we can use a M-H step for that parameter

K θ = {θ1, θ2, θ3, … , θK}

θ
(i+1)
k

θ
(i)
−k

θk|θk−1,Y

76 / 105

Gibbs Sampling

The Gibbs sampling algorithm generates updates

 by sampling in sequence:

Important: Sampling from the conditionals is often easier
to do than sampling from the marginal distribution .

In fact, we'll often introduce latent variables to make a Gibbs
sampling algorithm work where it otherwise wouldn't. This is called
data augmentation

θ(i+1) = {θ(i+1)
1 , θ(i+1)

2 , θ(i+1)
3 , … , θ(i+1)

K
}

θ
(i+1)
1 := θ∗

1 ∼ f(θ1|Y, θ(i)
2 , θ(i)

3 , … θ
(i)
K

)

θ
(i+1)
2 := θ∗

2 ∼ f(θ2|Y, θ(i+1)
1 , θ(i)

3 , … θ
(i)
K

)

⋮

θ
(i+1)
k

:= θ∗
k

∼ f(θk|Y, θ(i+1)
1 , θ(i+1)

2 , … θ
(i+1)
k−1 , θ(i)

k+1 … , θ(i)
K

)

⋮

θ
(i+1)
K

:= θ∗
K

∼ f(θK|Y, θ(i+1)
1 , θ(i+1)

2 , … θ
(i+1)
K−1)

f(θk|θ−k,Y)
f(θk|Y)

77 / 105

Gibbs Sampling

To see why sampling from the conditionals works, consider the implied
MH acceptance probability when we treat the conditional distribution

 as the proposal distribution

Rewrite the numerator/denominator in terms of the posterior and the
data (and recall that cancels)

f(θk|θ(i)
−k

,Y) Q

α = ×
f(Y|θ∗

k
, θ(i)

−k
)f(θ∗

k
, θ(i)

−k
)

f(Y|θ(i)
k

, θ(i)
−k

)f(θ(i)
k

, θ(i)
−k

)

f(θ(i)
k

|Y, θ(i)
−k

)

f(θ∗
k
|Y, θ(i)

−k
)

f(Y)

α = ×
f(θ∗

k
, θ(i)

−k
|Y)

f(θ(i)
k

, θ(i)
−k

|Y)

f(θ(i)
k

|Y, θ(i)
−k

)

f(θ∗
k
|Y, θ(i)

−k
)

78 / 105

Gibbs Sampling

Factor the posteriors

Everything cancels so that
So Gibbs sampling is a special case of Metropolis-Hastings where the
proposal distribution choice guarantees acceptance.

α = ×
f(θ∗

k
|θ(i)

−k
,Y) × f(θ(i)

−k
|Y)

f(θ(i)
k

|θ(i)
−k

,Y) × f(θ(i)
−k

|Y)

f(θ(i)
k

|Y, θ(i)
−k

)

f(θ∗
k
|Y, θ(i)

−k
)

α = 1

79 / 105

Bayesian Regression

80 / 105

Application 2: Predicting Elections

Now suppose that instead of observing counts, we look at the democratic
party vote share in county in the 2018 House elections (imagine we
summed over all of the votes in all of the districts in that county).

Let denote the share of votes going to the democratic party
candidate in 2018 in county .

We want to generate a predictive model based on , (here, we'll just be
using the democratic presidential vote share in 2016).

i

Yi
i

Xi

81 / 105

Bayesian Normal Model

The conventional "normal" Bayesian regression model assumes

In this case, , , and are all hyper-parameters

This is referred to as the "Normal-Inverse-Gamma" model as the joint
prior distribution on is Normal-Inverse Gamma and it happens to
also be the conjugate prior for the case with unknown and

So the posterior is known in closed form to be Normal-Inverse-
Gamma
And conditional on , is also normally distributed!

A common simplification is to make and marginally independent

Yi|Xi,β,σ2 ∼ Normal(X ′
iβ,σ2)

β|σ2 ∼ Normal(β0,σ2B−1
0)

σ2 ∼ Inverse-Gamma(,)
c0

2
d0

2

β0 B0 c0 d0

β,σ2

β σ2

σ2 β|X,Y,σ2

β σ2

β ∼ Normal(β0,B−1
0)

82 / 105

Plate notation

83 / 105

Application: Predicting Elections
Aggregate the house data to counties

elections_county <- elections %>%

 group_by(fipscode) %>%

 summarize(

 state=state[1],

 county=county[1],

 total.votes = sum(total.votes),

 dem = sum(dem))

Merge in 2015 Presidential

pres_2016 <- read_csv("clinton_2016_vote.csv")

elections_county <- elections_county %>%

 left_join(

 pres_2016 %>% dplyr::select(county_fips, candidatevotes, totalvot

 by=c(fipscode="county_fips"))

Generate vote shares

elections_county$dem2018 <- elections_county$dem/elections_county$tot

elections_county$dem2016 <- elections_county$candidatevotes/elections

Drop missing

elections_county <- elections_county %>%

 filter(!is.na(dem2018)&!is.na(dem2016)) 84 / 105

Metropolis-Hastings
Set up the regression

X_mat <- model.matrix(dem2018 ~ dem2016, data=elections_county)

Y <- elections_county$dem2018

K <- ncol(X_mat) # Number of beta parameters

Set up a diffuse prior

beta_0 <- rep(0, K)

B_inv_0 <- solve(diag(rep(1/9, K)))

c_0 = 0.001

d_0 = 0.001

Set up the MCMC

M <- 40000 # Number of MCMC samples

burnin <- 5000

beta_mcmc <- matrix(nrow = M, ncol=K) # Vector to store our samples

beta_mcmc[1,] <- c(0,1) # Pick a starting value

sigma_mcmc <- rep(NA, M)

sigma_mcmc[1] <- 1 85 / 105

Metropolis-Hastings
Write some functions to evaluate the likelihood and priors

log_lik_norm <- function(b, sigma, Y, X){

 linpred <- X%*%b

 sum(dnorm(Y, mean=linpred, sd=sigma, log=T))

}

86 / 105

Metropolis-within-Gibbs Algorithm Code

Doesn't fit on the slide :(

set.seed(6886)

for (i in 1:(M-1)){ # For i in 1:(M-1)

Beta

Step 1 - Proposal

 beta_star <- as.vector(mvtnorm::rmvnorm(1, mean = beta_mcmc[i,],

Step 2 - Accept/Reject

 lik_star_beta <- log_lik_norm(beta_star, sigma_mcmc[i], Y, X_mat)

 lik_current_beta <- log_lik_norm(beta_mcmc[i,], sigma_mcmc[i], Y,

 prior_star_beta <- mvtnorm::dmvnorm(beta_star, mean = beta_0, sig

 prior_current_beta <- mvtnorm::dmvnorm(beta_mcmc[i,], mean = beta

Accept/reject

 ar_beta <- exp(lik_star_beta + prior_star_beta - lik_current_bet

 accept_beta <- rbinom(1,1,min(1,ar_beta))

 beta_mcmc[i+1,] <- beta_star*accept_beta + beta_mcmc[i,]*(1-accep

Sigma

Step 1 - Proposal

 sigma_log <- rnorm(1, mean = log(sigma_mcmc[i]), sd=.01)

 sigma_star <- exp(sigma_log) 87 / 105

Metropolis-within-Gibbs Algorithm Explanation I

Metropolis-Hastings for Beta:

Generate a proposal for the vector of parameters beta (beta_star)
from a multivariate normal distribution centered at the current value
of beta (beta_mcmc[i,]).

Compute the likelihood of the proposed value lik_star_beta and the
likelihood of the current value lik_current_beta.

Compute the prior for the proposed value prior_star_beta and the
prior for the current value prior_current_beta.

Compute the acceptance ratio ar_beta and decides whether to accept
the proposed value or stick with the current value.

88 / 105

Metropolis-within-Gibbs Algorithm Explanation II

Metropolis-Hastings for Sigma:

Similarly, a proposal for the parameter sigma (sigma_star) is
generated from a log-normal distribution centered at the current
value of sigma (sigma_mcmc[i]).

Compute the likelihood and prior values for the proposed and current
values of sigma.

An acceptance ratio ar_sigma is then calculated, and a decision is
made to accept the proposed value or remain with the current one.

89 / 105

Metropolis-within-Gibbs Algorithm Explanation III

The code alternates between updating the beta parameters and the sigma
parameter.

This is a Gibbs sampling structure (updating parameters one at a time or
block by block).

However, since we are using Metropolis-Hastings steps for each of the
parameter sets instead of directly sampling from full conditionals, it's
termed "Metropolis-within-Gibbs."

90 / 105

Convergence

beta_mcmc_use <- beta_mcmc[burnin:M,] # Toss our burn-in period

plot(y=beta_mcmc_use[,1], x=1:length(beta_mcmc_use[,1]), xlab="Iterat

β0

91 / 105

Convergence

plot(y=beta_mcmc_use[,2], x=1:length(beta_mcmc_use[,2]), xlab="Iterat

β1

92 / 105

Convergence

sigma_mcmc_use <- sigma_mcmc[burnin:M]

plot(y=sigma_mcmc_use, x=1:length(sigma_mcmc_use), xlab="Iteration",

σ

93 / 105

Summaries

beta_mcmc_out <- as.data.frame(beta_mcmc_use)

colnames(beta_mcmc_out) <- c("Intercept", "dem2016")

beta_mcmc_out %>% ggplot(aes(x=Intercept)) + xlim(.01, .05) + theme_

β0

94 / 105

Summaries

beta_mcmc_out %>% ggplot(aes(x=dem2016)) + theme_bw() + xlim(1.02, 1

β1

95 / 105

Summaries

Overlay the data and regression

96 / 105

Summaries

Posterior means and 95% credible intervals

summary_results <- data.frame(variable = c("Intercept", "dem2016"), p

 ci95_lower = apply(beta_mcmc_out, 2, fu

 ci95_upper = apply(beta_mcmc_out, 2, fu

summary_results

variable pm ci95_lower ci95_upper

Intercept Intercept 0.0304 0.0258 0.035

dem2016 dem2016 1.0691 1.0562 1.082

97 / 105

brms

Let's check against an existing Gibbs sampling implementation from brms

set.seed(6886)

library(brms)

brms_fit <- brm(

 formula=dem2018 ~ dem2016,

 data=elections_county,

 family=gaussian(),

 chains = 1,

 iter=M,

 warmup=burnin,

 seed=6886

)

Running /usr/lib/R/bin/R CMD SHLIB foo.c

using C compiler: ‘gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0’

gcc -I"/usr/share/R/include" -DNDEBUG -I"/home/sminhas/R/x86_64-pc-linux

In file included from /home/sminhas/R/x86_64-pc-linux-gnu-library/4.3/Rcpp

from /home/sminhas/R/x86_64-pc-linux-gnu-library/4.3/Rcpp

from /home/sminhas/R/x86_64-pc-linux-gnu-library/4.3/Stan

from <command-line>:

/home/sminhas/R/x86_64-pc-linux-gnu-library/4.3/RcppEigen/include/Eigen/sr

628 | namespace Eigen {
98 / 105

Gibbs sampler

summary(brms_fit)

Family: gaussian

Links: mu = identity; sigma = identity

Formula: dem2018 ~ dem2016

Data: elections_county (Number of observations: 3061)

Draws: 1 chains, each with iter = 40000; warmup = 5000; thin = 1;

total post-warmup draws = 35000

Population-Level Effects:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 0.03 0.00 0.03 0.04 1.00 27708 25872

dem2016 1.07 0.01 1.06 1.08 1.00 25458 24355

Family Specific Parameters:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.06 0.00 0.06 0.06 1.00 24494 24102

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS

and Tail_ESS are effective sample size measures, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

99 / 105

Diagnostics

Prettier trace plots (i.e., less visible dependence)!

plot(brms_fit)

100 / 105

Under the hood of brms

brms is a front-end for an amazing piece of software called Stan

Stan actually does not use a Metropolis and/or Gibbs algorithm but
instead uses an approach called Hamiltonian Monte Carlo (HMC)

HMC is another sampling method that is computationally costly but its
proposals are much more efficient and so it doesn't need as many samples
to describe a posterior ... as models become more complex HMC is the
way to go

101 / 105

HMC I

HMC is complex, but we can try to understand it at a high level

Let's try to understand it in a very superficial way by using again the
politician's tale.

Suppose the politician has moved to the mainland now.

Now, instead of moving over a set of discrete islands, it has to move
through a continuous territory stretched out along a narrow valley,
running north-south.

The obligations are the same: to visit his citizens in proportion to their
local density.

And again, the politician doesn't know the population of each area in
advance.

102 / 105

HMC II

The strategy of the politician is the following:

He drives his car across the narrow valley back and forth along its length.

In order to spend more time in densely settled areas, he slows down his
vehicle when houses grow more dense.

Likewise, he speeds up when houses grow more sparse.

This strategy requires knowing how quickly population density is
changing, at their current location.

But it doesn't require remembering where they've been or knowing the
population distribution anyplace else.

This story is analogous to how Hamiltonian Monte Carlo works.

103 / 105

HMC III

In statistical applications, the politician's vehicle is the current vector of
parameter values.

HMC really does run a physics simulation, pretending the vector of
parameters gives the position of a little frictionless particle.

The log-posterior provides a surface for this particle to glide across.

Then the job is to sweep across this surface, adjusting speed (momentum)
in proportion to how high up we are.

When the log-posterior is very flat, then the particle can glide for a long
time before the slope (gradient) makes it turn around.

When instead the log-posterior is very steep, then the particle doesn’t get
far before turning around.

104 / 105

Next time

We'll practice more with brms

testing out the affect of different priors on the posterior

running models

interpreting results (brms works with marginaleffects)

making predictions using the posterior predictive

making tables (brms works with modelsummary)

talk about computational strategies for running things

and then we'll shift towards advanced applications such as multilevel
modeling and measurement

105 / 105

