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Bayesian Fundamentals

The punchline

In the Bayesian world the unobserved quantities are assigned distributional properties and, therefore,

become random variables in the analysis.

These distributions come in two basic flavors. If the distribution of the unknown quantity is not

conditioned on fixed data, it is called prior distribution because it describes knowledge prior to

seeing data.

Alternatively, if the distribution is conditioned on data that we observe, it is clearly updated from the

unconditioned state and, therefore, more informed. This distribution is called posterior distribution.

[. . . ]

The punchline is this: All likelihood-based models are Bayesian models in which the prior distribution

is an appropriately selected uniform prior, and as the size of the data gets large they are identical

given any finite appropriate prior. So such empirical researchers are really Bayesian; they just do

not know it yet.

Gill, J., & Witko, C. (2013). Bayesian analytical methods: A methodological prescription for public

administration. Journal of Public Administration Research and Theory, 23(2), 457–494.

Likelihood function

• Specification of a pdf or pmf: p(y|θ).

• Also called the data generating process (or the generative model) for y.

• Logical inversion: “Which unknown θ most likely produces the known y?” → L(θ|y).

• The notational distinction between p(y|θ) and L(θ|y) is purely conceptual. p(y|θ) = L(θ|y).
∗MSU Political Science. minhassh@msu.edu.
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• We will use p(y|θ).

• Note that the likelihood function multiplies densities across all observations; e.g., a normal

likelihood function is given by:

p(y|µ, σ) =
N∏

i=1

1
σ

√
2π

exp
(
−0.5

(
(yi − µi)2/σ

))
• This is what we mean mathematically when we use the shorthand

– y ∼ N(µ, σ) or

– yi ∼ N(µi, σ) for all i = 1, ...N .

Prior distribution

• A distributional characterization of our belief about an unknown quantity (i.e., a parameter)

prior to seeing the data: p(θ)

• This includes statements about family, support, and density.

– Family: A pdf (continuous parameters) or pmf (discrete parameters) that can plausibly

generate the parameter values.

– Support: Some parameters have constrained support: Probability parameters must be

inside [0, 1]; variance parameters must be ≥ 0.

– Density: A distributional characterization which values of the parameter we think are

more or less likely to observe.

• The prior distribution can be

– flat (i.e., uniformly distributed over the supported range – often improper)

– purposefully very vague, and thus, rather uninformative

– weakly informative

– specific and substantively informed (e.g., by previous research or expert assessment)

Posterior distribution

• Updating our distributional belief about θ given the data, y: p(θ|y)

• Follows the proportional version of Bayes’ Law: p(θ|y) ∝ p(θ) × p(y|θ)

• Yields a weighthed combination of likelihood and prior

• The prior pulls the posterior density toward the center of gravity of the prior distribution

• As the data grows large, the likelihood becomes more influential:
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– one factor for p(θ), N factors for p(yi|θi)

– we will see this analytically and using simulations later on

Coin flip experiment

The experiment

Suppose we flip a coin up to N times:

• The fairness of a coin can be expressed through a probability parameter, π, that governs the

probability that a coin flip produces heads (1) has opposed to tails (0)

• We start out with the belief that the coin is fair – that is, we consider it more probable that

the coin is fair (π ≈ 0.5) and less probable that it systematically over-produces either heads

or tails

• Unbeknownst to us, the coin is far from fair – it is 4 times as likely to produce heads as it is

to produce tails (that is, π = 0.8)

• We slowly learn about this in the process of flipping the coin and keeping score of the number

of flips n and the number of heads k. . .

Analytical form: Prior distribution

• The beta distribution is a suitable candidate for characterizing our prior beliefs: π ∼ beta(a, b)

• Characterized by two shape parameters, a and b

• a and b are hyperparameters: Known (or chosen) parameters that characterize a prior distri-

bution.

• Constrained support: π ∈ [0, 1]

• pdf: p(π) = πa−1(1−π)b−1

B(a,b)
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Analytical form: Likelihood

• Flipping one and the same coin n times is a series of Bernoulli trials

• The binomial distribution describes the corresponding data generating process:

k ∼ Binomial(n, π)

• pmf: p(k|n, π) =
(n

k

)
πk(1 − π)(n−k)

Analytical form: Posterior distribution

Remember:

p(θ|y) ∝ p(θ) × p(y|θ)
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So what does this mean in the present example?

p(π|n, k) ∝ p(π) × p(k|n, π)

p(π|n, k) ∝ πa−1(1 − π)b−1

B(a, b) ×
(

n

k

)
πk(1 − π)(n−k)

Note that since we use the proportional version of Bayes’ Law (i.e., we do not stipulate exact

equality), we can drop any constant terms that do not involve our parameter of interest, π:

p(π|n, k) ∝ πa−1(1 − π)b−1 × πk(1 − π)(n−k)

The rest, then, is easy: Following the rules of exponentiation, we add exponents for identical bases.

This gives us our posterior distribution for π:

p(π|n, k) ∝ πa+k−1(1 − π)b+n−k−1

As you see, our posterior has the exact same form as our prior. It is a beta distribution with updated

parameters

• a′ = a + k − 1

• b′ = b + n − k − 1

This property is called conjugacy: Prior and posterior are of the same family.

Now, take a moment to think about our analytical solution for the updated parameter:

• What does it take for the data to dominate the prior?

• What if the prior is weak (e.g., π ∼ beta(1, 1))?

• What if the prior is strong (e.g., π ∼ beta(100, 100))?

Simulation

Prior distribution Code: Defining and plotting the prior distribution
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len_pi = 1001L ### number of candidate values for pi

pi = seq(0, 1, length.out = len_pi) ### candidate values for pi

a = b = 5 ### hyperparameters

prior = dbeta(pi, a, b) ### prior distribution

## Plot

plot( ### set up empty plot, specify labels

pi, prior,

type = 'n',

xlab = "Density",

ylab = expression(paste("Prior Distribution for ", pi))

)

polygon( ### draw density distribution

c(rep(0, length(pi)), pi),

c(prior, rev(prior)),

col = adjustcolor('red', alpha.f = .4),

border = NA

)

abline( ### add vertical at pi = 0.5

v = .5,

col = 'white'

)
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Posterior distribution Code: Simulating the experiment

set.seed(20210329) ### set seed for replicability

len_pi = 1001L ### number of candidate values for pi

pi = seq(0, 1, length.out = len_pi) ### candidate values for pi

a = b = 5 ### hyperparameters

n = 300 ### num. of coin flips

pi_true = .8 ### true parameter

data = rbinom(n, 1, pi_true) ### n coin flips

posterior = matrix(NA, 3L, n) ### matrix container for posterior

for (i in seq_len(n)) {

current_sequence = data[1:i] ### sequence up until ith draw

k = sum(current_sequence) ### number of heads in current sequence

##### Updating

a_prime = a + k

b_prime = b + i - k

### Analytical means and credible intervals

posterior[1, i] = a_prime / (a_prime + b_prime)
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posterior[2, i] = qbeta(0.025, a_prime, b_prime)

posterior[3, i] = qbeta(0.975, a_prime, b_prime)

}

## Plot

plot( ### set up empty plot with labels

1:n, 1:n,

type = 'n',

xlab = "Number of Coin Flips",

ylab = expression(paste("Posterior Means of ",

pi,

sep = " ")),

ylim = c(0, 1),

xlim = c(1, n)

)

abline( ### reference line for the true pi

h = c(.5, .8),

col = "gray80"

)

rect(-.5, qbeta(0.025, 5, 5), ### prior mean + interval at i = 0

0.5, qbeta(0.975, 5, 5),

col = adjustcolor('red', .4),

border = adjustcolor('red', .2))

segments(-.5, .5,

0.5, .5,

col = adjustcolor('red', .9),

lwd = 1.5)

polygon( ### posterior means + intervals

c(seq_len(n), rev(seq_len(n))),

c(posterior[2, ], rev(posterior[3, ])),

col = adjustcolor('blue', .4),
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border = adjustcolor('blue', .2)

)

lines(

seq_len(n),

posterior[1, ],

col = adjustcolor('blue', .9),

lwd = 1.5

)
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Note: After 300 coin flips, we have observed 241 heads, which is a proportion of 0.803. The posterior

median is 0.794; the 95% credible interval is [0.747, 0.837].

MCMC algorithms

Analytical (classical) Bayesian inference

• As you may have noticed: Our coin flip example did not involve any numerical estimation

algorithms.

• We simply observed the data, applied Bayes’ Law, and analytically updated our parameters.

• This allowed us to retrieve a distributional characterization of our parameter of interest at

each iteration of the coin flip series.

• The reasons why we could do this with ease is that this simple Binomial problem involved a

single parameter π; i.e, we were dealing with a uni-dimensional parameter space.
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The limits of analytical Bayesian inference

• Even in only slightly more intricate applications, Bayesian inference involves finding a joint

posterior for all parameters in a model, i.e., finding a multi-dimensional parameter space.

• Inference on single parameters from a joint multi-dimensional parameter space requires that

we retrieve the marginal posterior distribution from the joint posterior distribution.

• Marginalizing the joint multidimensional posterior distribution w.r.t. to a given a parameter

gives the posterior distribution for that parameter. This requires integrating out all other

parameters.

• For instance, when our joint posterior in a three-dimensional parameter space is p(α, β, γ), we

need to obtain each marginal posterior akin to p(α) =
∫

β

∫
γ p(α, β, γ)dβdγ

• For complex multi-dimensional posterior distributions, finding analytical solutions through

integration becomes cumbersome, if not outright impossible.

Numerical approximation via MCMC

That’s where numerical approximation through Markov Chain Monte Carlo (MCMC) algorithms

comes in:

• MCMC are iterative computational processes that explore and describe a posterior distribution.

• Developed in the 1980s and popularized in the 1990s, MCMC algorithms quickly eliminated

the need for analytical marginalizations of single parameters from joint multi-dimensional

posteriors.

• The core idea:

– Markov Chains wander through, and take samples from, the parameter space.Following

an initial warmup period, the Markov Chains will converge to high-density regions of the

underlying posterior distribution (ergodicity).

– The proportion of “steps” in a given region of multidimensional parameter space gives a

stochastic simulation of the posterior probability density.

– This yields a numerical approximation of the underlying posterior distribution, much

like Monte Carlo simulations of MLE parameters yield numerical approximations of the

underlying sampling distribution.
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(Some) MCMC Algorithms

1. Gibbs: Draws iteratively and alternatively from the conditional conjugate distribution of

each parameter.

2. Metropolis-Hastings: Considers a single multidimensional move on each iteration depending

on the quality of the proposed candidate draw.

3. Hamiltonian Monte Carlo (HMC), used in Stan:

The Hamiltonian Monte Carlo algorithm starts at a specified initial set of parameters θ; in Stan,

this value is either user-specified or generated randomly. Then, for a given number of iterations, a

new momentum vector is sampled and the current value of the parameter θ is updated using the

leapfrog integrator with discretization time ϵ and number of steps L according to the Hamiltonian

dynamics. Then a Metropolis acceptance step is applied, and a decision is made whether to update

to the new state (θ∗, ρ∗) or keep the existing state.

Source: Stan Reference Manual, Section 14.1

Implementing a Gibbs sampler

In a nutshell

• We want to perform inference on a variable y, of which we have N observations.

• We stipulate that the data-generating process that produces y is normal: y ∼ N(µ, σ2). This

yields a two-dimensional parameter space.

• For reasons of convenience, we parameterize the variance of this normal distribution in terms

of its precision τ = 1
σ2 , not in terms of its standard deviation or variance.

• Note, however, that rnorm() in R uses the standard deviation, which is sqrt(1 / tau).

• We will use a Gibbs sampler. Remember that Gibbs draws iteratively and alternatively from

the conditional conjugate distribution of each parameter.

• We thus need some analytical preliminaries: Namely, analytical forms for the posterior

distributions of the two parameters from whose marginal posteriors we would like to sample.

• This will not involve marginalizing out the “unwanted” parameters; instead, we will derive

the posteriors of µ and τ as conditional functions of τ and µ, respectively
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Application

• Specifically, we will focus on the variable sup_afd from the data set gles.

• Let’s pretend our prior belief is completely naive:

– We don’t know how (un)popular the AfD is in the German electorate

– But we know that individual support is measured on a -5 to 5 scale

– Our prior belief for µ should thus be agnostic as to whether people like or dislike

the AfD and sufficiently vague to allow for the possibility that we may be wrong:

µ ∼ N(θ = 0, ω−1 = 10) (mean θ and precision ω are hyperparameters for the prior of µ)

– Our prior belief for τ will also be vague: τ ∼ Γ(α = 20, β = 200) (shape α and rate β are

hyperparameters for the prior of τ)

– We have no prior belief about the dependence of both parameters and hence specify

independent prior distributions

Analytical preliminaries: µ

Our prior belief is that µ is distributed normal with mean θ = 0 and precision ω = .1:

µ ∼ N(0, 10)

The prior pdf is given by:

p(µ|θ, ω) =
√

ω

2π
exp

(
−ω(µ − θ)2

2

)

while the likelihood for the data y is given by

p(y|µ, τ) =
N∏
i

√
τ

2π
exp

(
−τ(yi − µ)2

2

)

Multiplying prior and likelihood and performing some algebraic transformations, we see that our

conditional posterior density will be

p(µ|θ, ω, τ, y) ∝ exp
(

−ω + Nτ

2

(
µ − ωθ + Nτȳ

ω + Nτ

)2)
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We recognize this as the normal pdf with updated mean parameter θ∗ = ωθ+Nτȳ
ω+Nτ and updated

precision parameter ω∗ = ω + Nτ .

This gives us the required analytical solutions for the normal parameters that characterize the

posterior density of µ.

Analytical preliminaries: τ

Furthermore, for our prior knowledge about the precision, we assume that τ is Gamma-distributed

with shape α = 20 and rate β = 200: τ ∼ Γ(20, 200) which yields the prior pdf:

p(τ |α, β) = βα

Γ(α)τα−1 exp(−βτ)

while the likelihood for the data is still given by

p(y|µ, τ) =
N∏
i

√
τ

2π
exp

(
−τ(yi − µ)2

2

)

Once again taking the product and rearranging, we find that the conditional posterior pdf of τ is

given by

p(τ |α, β, µ, y) ∝ τα+ N
2 −1 exp

(
−
(

β +
N∑

i=1

(yi − µ)2

2 τ

))

This is a gamma distribution with updated parameters α∗ = α + N
2 and β∗ = β +

∑N
i=1

(yi−µ)2

2 .

Thus, we also have analytical solutions for the Gamma parameters that characterize the posterior

density of τ .

Simulating the independent prior distributions

Code: Function for simulating the priors

# Function

draw_from_prior =

function(theta,

omega,
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alpha,

beta,

n_draws,

seed = 20210329) {

# Set seed

set.seed(seed)

# Take draws

mu = rnorm(n_draws, theta, 1 / sqrt(omega))

tau = rgamma(n_draws, alpha, beta)

## Return output

return(list(mu = mu,

tau = tau))

}

# Apply function

draws_prior =

draw_from_prior(

theta = 0,

omega = .1,

alpha = 20,

beta = 200,

n_draws = 4000

)

# Plots of Marginal Densities

par(mfrow = c(1, 3), oma = c(0, 0, 3, 0))

plot(density(draws_prior$mu),

main = expression("Marginal Density of" ~ mu))

plot(density(draws_prior$tau),

main = expression("Marginal Density of" ~ tau))
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plot(density(1 / draws_prior$tau),

main = expression("Marginal Density of" ~ sigmaˆ2))

title("Prior Distribution of Mean and Precision", outer = T)
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Implementing the Gibbs sampler for the posterior

Code: Gibbs sampler for the posterior

# Define function

draw_from_posterior = function(theta,

omega,

alpha,

beta,

n_warmup,

n_draws,

data,

seed = 20210329,

keep_warmup = TRUE) {

# Set seed
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set.seed(seed)

# Length of chain

len_chain = n_warmup + n_draws

# Data characteristics

n_data = length(data)

mean_data = mean(data)

# Initialize containers

mu = rep(NA, len_chain)

tau = rep(NA, len_chain)

# Run Gibbs sampler

for (i in seq_len(len_chain)) {

if (i == 1) {

## Iteration 1: Initialize from prior

alpha_star = alpha

beta_star = beta

} else {

## Iterations 2+: Update alpha and beta

alpha_star = alpha + n_data / 2

beta_star = beta + sum(((data - mu[i - 1]) ˆ 2) / 2)

}

## Sample tau

tau[i] = rgamma(1, alpha_star, beta_star)

## Update theta and omega

theta_star =

(omega * theta + n_data * tau[i] * mean_data) /
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(omega + n_data * tau[i])

omega_star = omega + n_data * tau[i]

## Sample mu

mu[i] = rnorm(1, theta_star, 1 / sqrt(omega_star))

}

## Conditionally discard warmup-draws

if (!keep_warmup) {

tau = tau[(n_warmup + 1):len_chain]

mu = mu[(n_warmup + 1):len_chain]

}

## Return output

return(list(mu = mu,

tau = tau))

}
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How the sampler explores the joint posterior density
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Convergence diagnostics

Why diagnose?

MCMC algorithms use iterative algorithms to explore posterior distributions and to produce

numerical approximations thereof.

However, even with appropriately specified models and algorithms, we can never know a priori

if and when a chain has converged to its target distribution. We must thus rely on convergence

diagnostics.

Important: Convergence diagnostics cannot show or prove convergence. They can only show signs

of non-convergence!
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To conclude that the post-warmup draws of our sampler in fact explore the target distribution, we

want to show at least two things:

1. Every chain is in a stationary state (i.e., does not “wander off” the target distribution)

2. Multiple independent chains are in the same stationary state (i.e., no convergence to different

target distributions given identical data)

Generic diagnostics

Generic diagnostics (see Gill 2015, Ch. 14.3) include:

1. Potential scale reduction statistic R̂ (aka Gelman-Rubin convergence diagnostic)

V̂ ar(θ) = (1 − 1
niter

)
(

1
nchains(niter − 1)

nchains∑
j=1

niter∑
i=1

(θij − θ̄j)2

)
︸ ︷︷ ︸

Within chain var

+ 1
niter

(
niter

nchains − 1

nchains∑
j=1

(θ̄j − ¯̄θ)2

)
︸ ︷︷ ︸

Between chain var

• low values indicate that chains are stationary (convergence to target distribution within

chains)

• low values indicate that chains mix (convergence to same target distribution across

chains)

2. Geweke Time-Series Diagnostic: Compare non-overlapping post-warmup portions of each

chain to test within-convergence

3. Heidelberger and Welch Diagnostic: Compare early post-warmup portion of each chain

with late portion to test within-convergence

4. Raftery and Lewis Integrated Diagnostic: Evaluates the full chain of a pilot run (requires

that save_warmup = TRUE) to estimate minimum required length of warmup and sampling

These are implemented as part of the coda package (Output Analysis and Diagnostics for MCMC).

Visual diagnostics

The most widespread visual diagnostics are:

1. Traceplots: Visually inspect if chains are stationary and have converged to the same

distribution

2. Autocorrelation plots: Visually inspect if the chain is sluggish in exploring the parameter

space.
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Application

In the following, we will use multiple chain runs of our sampler in conjunction with the coda package

to check for signs of non-convergence.

Note that coda functions require that we combine our chains into mcmc.list objects.

Raftery and Lewis Integrated Diagnostic

The Raftery-Lewis diagnostic takes a single chain, including warm-up draws, to estimate the

minimum required length of warmup and sampling runs:

##

## Quantile (q) = 0.5

## Accuracy (r) = +/- 0.0125

## Probability (s) = 0.95

##

## Burn-in Total Lower bound Dependence

## (M) (N) (Nmin) factor (I)

## mu 2 6278 6147 1.020

## tau 2 5906 6147 0.961

Gelman-Rubin, Geweke, and Heidelberger-Welch diagnostics

We will use the recommended run-length from the Raftery-Lewis diagnostic for four independent

runs of our sampler.

We will ensure that ou chains run independently (i.e., using different starting values and different

random number sequences) by setting different seed:

seeds = sample(10001:99999, 4)

draws_multiple_chains = lapply(seeds,

function(seed) {

as.mcmc(simplify2array(

draw_from_posterior(

theta = 0,

omega = .1,
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alpha = 20,

beta = 200,

n_warmup = 200,

n_draws = 6147,

data = gles$sup_afd,

keep_warmup = FALSE,

seed = seed

)

))

})

# Save as mcmc.list

draws_multiple_chains = as.mcmc.list(draws_multiple_chains)

## Potential scale reduction factors:

##

## Point est. Upper C.I.

## mu 1 1

## tau 1 1

##

## Multivariate psrf

##

## 1

## [[1]]

##

## Fraction in 1st window = 0.1

## Fraction in 2nd window = 0.5

##

## mu tau

## 0.9199 0.7017

##

##
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## [[2]]

##

## Fraction in 1st window = 0.1

## Fraction in 2nd window = 0.5

##

## mu tau

## -0.1502 0.2656

##

##

## [[3]]

##

## Fraction in 1st window = 0.1

## Fraction in 2nd window = 0.5

##

## mu tau

## -0.1191 -0.9184

##

##

## [[4]]

##

## Fraction in 1st window = 0.1

## Fraction in 2nd window = 0.5

##

## mu tau

## 1.194 1.114

## [[1]]

##

## Stationarity start p-value

## test iteration

## mu passed 1 0.204

## tau passed 1 0.695

##

23



## Halfwidth Mean Halfwidth

## test

## mu passed -3.231 0.00182

## tau passed 0.138 0.00013

##

## [[2]]

##

## Stationarity start p-value

## test iteration

## mu passed 1 0.771

## tau passed 1 0.332

##

## Halfwidth Mean Halfwidth

## test

## mu passed -3.230 0.001855

## tau passed 0.138 0.000134

##

## [[3]]

##

## Stationarity start p-value

## test iteration

## mu passed 1 0.388

## tau passed 1 0.552

##

## Halfwidth Mean Halfwidth

## test

## mu passed -3.230 0.001855

## tau passed 0.138 0.000132

##

## [[4]]

##

## Stationarity start p-value
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## test iteration

## mu passed 1 0.652

## tau passed 1 0.340

##

## Halfwidth Mean Halfwidth

## test

## mu passed -3.229 0.00186

## tau passed 0.138 0.00014

Trace plots
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Autocorrelation plots
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Contrasting Bayesian and frequentist approaches

Priors

• Choice of priors allows us to explicitly incorporate prior beliefs about parameters. . .

• . . . but also comes with the obligation to be transparent and responsible with respect to the

subjectivity this brings into our analyses

Inference

Interpretation

• Bayesian inference does note presume large (quasi-infinite) streams of independent identically

distributed (IID) data; data are considered fixed, parameters random.

• This allows for straightforward interpretations of inferential uncertainty:

– Bayesian: “Given the data, we can conclude that there is a 95% probability that the

mean is between 8 and 12, with highest probability density at a value of 10”.

– Frequentist: “If we took a large number of independent random samples from the same

population and constructed a 95% confidence interval around the sample for each of

them, these confidence intervals would contain the true population mean 95% of the time.

Given this long-run frequency, we are 95% confident that the specific 95% confidence

intervals from our singular sample contains the true population parameter. . . ”.

Finite-sample and asymptotic properties

• Bayesian inference allows for exact inference in finite-sample applications where the asymptoti‘c

properties of MLE estimators are implausible (normal approximation, etc.). . .

• . . . yet, posterior distribution often asymptotically converge to the sampling distribution of

MLE estimators (Bernstein-von-Mises Theorem)

Flexibility and computational reliability

• The use of MCMC algorithms for probabilistic approximate inference makes Bayesian ap-

proaches incredibly flexible and allows for computationally reliable estimation of complex,

analytically intractable marginal likelihoods (avoids integration of super high-dimensional

integrals). . .

28

https://en.wikipedia.org/wiki/Bernstein%E2%80%93von_Mises_theorem


• . . . but sometimes comes with the necessity of high computational resources and/or long

computation times, and always necessitates convergence diagnosis and model checking
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