
Advanced Network AnalysisAdvanced Network Analysis
Temporal ERGMsTemporal ERGMs

Olga Chyzh [www.olgachyzh.com]Olga Chyzh [www.olgachyzh.com]

1 / 551 / 55

Longitudinal networks

2 / 55

Longitudinal networks
Networks that change over time.

Examples: networks of friends, conflict networks, trade networks.

Want to model network dynamics within and across time periods.

3 / 55

Outline
Setting up longitudinal network data

Visualizing longitudinal data

Descriptive statistics

Inferential analysis

4 / 55

Getting the data ready
We are used to data in this format:

#install_github("ochyzh/networkdata")
library(networkdata)

data(allyData)

head(dyadData)[,1:8]

cname1 cname2 year ally war contiguity id1_cinc id2_cinc

2 CAN USA 1991 1 0 1 0.0119571 0.1364806

3 MEX USA 1991 1 0 1 0.0125758 0.1364806

4 COL USA 1991 1 0 0 0.0046681 0.1364806

5 VEN USA 1991 1 0 0 0.0052502 0.1364806

6 PER USA 1991 1 0 0 0.0033841 0.1364806

7 BRA USA 1991 1 0 0 0.0240151 0.1364806

5 / 55

Getting the data ready
We need to convert this information such that:

the dependent variable must be a list of network objects

nodal covariates are vertex attributes in the list of network objects

dyadic covariates are included separately in a list of matrices

6 / 55

class(war)

[1] "list"

length(war)

[1] 10

class(war[[1]])

[1] "matrix" "array"

dim(war[[1]])

[1] 50 50

war[[1]][1:3,1:3]

USA CHN IND

USA 0 0 0

CHN 0 0 1

IND 0 0 0

Start with setting up war
Output should look like this:

7 / 55

contiguity should be easier
Output should look like this:

class(contiguity)

[1] "matrix" "array"

dim(contiguity)

[1] 50 50

contiguity[1:3,1:3]

USA CHN IND

USA 0 0 0

CHN 0 0 1

IND 0 1 0

8 / 55

Now set up DV with vertex attributes
Output should look like this:

class(ally)

[1] "list"

length(ally)

[1] 10

class(ally[[1]])

[1] "network"

list.vertex.attributes(ally[[1]])

[1] "cinc" "cname" "polity" "vertex.names" "year"

9 / 55

Exploring temporal network data
The statnet package includes a range of "sub-packages" that enable you to
understand the characteristics of dynamic networks:

networkDynamic: storage and management of temporal network data
tsna: descriptive statistics and graphics for exploratory network analysis
ndtv: utilities for plotting temporal networks (including network movies)

10 / 55

Prepping data
First step is going to be formatting our list of network objects into a format
that these packages can recognize:

allyDyn = networkDynamic(network.list=ally)

Neither start or onsets specified, assuming start=0

Onsets and termini not specified, assuming each network in network.list sh

Argument base.net not specified, using first element of network.list inste

Created net.obs.period to describe network

Network observation period info:

Number of observation spells: 1

Maximal time range observed: 0 until 10

Temporal mode: discrete

Time unit: step

Suggested time increment: 1

11 / 55

Quick snapshots
networkDynamic makes it easy to generate some snapshots of a longitudinal
network:

par(mfrow = c(1,2))

p<-plot(

 network.extract(allyDyn, at = 0),

 main = "1991", displaylabels = T)

plot(

 network.extract(allyDyn, at = 9),

 main = "2000", displaylabels = T,coord=p)

12 / 55

Quick snapshots

13 / 55

Quick movie
ndtv makes it pretty easy to render a simple D3 movie for a longitudinal
network:

library(ndtv)

render.d3movie(allyDyn,

 plot.par=list(displaylabels=T),filename="AlliesNetwork.html", lau

14 / 55

Descriptive analyses
tsna enables us to quickly calculate some basic descriptive statistics such as
the density of a graph:

library(tsna)

tSnaStats(allyDyn, "gden") # Changes in graph density

Time Series:

Start = 0

End = 10

Frequency = 1

Series 1

[1,] 0.08816327

[2,] 0.09061224

[3,] 0.09061224

[4,] 0.08979592

[5,] 0.08979592

[6,] 0.08979592

[7,] 0.09795918

[8,] 0.09795918

[9,] 0.09795918

[10,] 0.09795918

[11,] NA 15 / 55

Descriptive analyses
Can also examine changes in transitivity over time:

tSnaStats(allyDyn, "gtrans") # Changes in graph transitivity

Time Series:

Start = 0

End = 10

Frequency = 1

Series 1

[1,] 0.7617647

[2,] 0.7768924

[3,] 0.7768924

[4,] 0.7768924

[5,] 0.7768924

[6,] 0.7768924

[7,] 0.7974684

[8,] 0.7974684

[9,] 0.7974684

[10,] 0.7974684

[11,] NA

16 / 55

Descriptive analyses
The tErgmStats enables us to calculate changes in ergm terms over time:

tErgmStats(allyDyn, "~ edges+triangle")

Time Series:

Start = 0

End = 10

Frequency = 1

edges triangle

0 108 259

1 111 260

2 111 260

3 110 260

4 110 260

5 110 260

6 120 315

7 120 315

8 120 315

9 120 315

10 0 0

17 / 55

Your Turn
1. For this exercise, you will work with the friendship data from
library(RSiena). Run the following code to load the data.

library(RSiena)

friend.data.w1 <- s501

friend.data.w2 <- s502

friend.data.w3 <- s503

drink <- s50a

smoke <- s50s

1. Format the friendship data from as a networkDynamic object.

2. Summarize changes in friendships (edges), triangles, and number of
nodes with indegrees 1 nd 2, over time.

3. Plot the first and the third waves of the friends network side-by-side using
the network.extract function.

4. Make a quick movie of the friends network over time using the
render.d3movie function.

18 / 55

TERGM: Discrete time model
Developed by Robins & Pattison (2001) and further developed by Hanneke
et al. (2010)

Scholars in political science most notably Cranmer and Desmarais (2011)
have eased the use and highlighted the utility of these types of models for
political science

Extension of ERGM to the temporal setting is based on the idea of panel
regression

In a sequence of observations, lagged earlier observations or derived
information thereof can be used as predictors for later observations.

In other words, some of the statistics are direct functions of an earlier
realization of the network
In its most basic form, the TERGM is a conditional ERGM with an
earlier observation of the network occurring among the predictors.

19 / 55

https://www.tandfonline.com/doi/abs/10.1080/0022250X.2001.9990243?casa_token=6IzkEyfRhVAAAAAA:f5jksd3D1DV9G9lEHcDO1ZoZGaeE5pQc2zdVidN4SlhIelQpLgqV5idhEcEJCOrema_0XuTEow5G7Q
https://projecteuclid.org/euclid.ejs/1276694116
https://people.cs.umass.edu/~wallach/courses/s11/cmpsci791ss/readings/cranmer11inferential.pdf

TERGM: Discrete time model
To extend ERGM to a longitudinal context, Hanneke et al. (2010) make a
Markov assumption on the network from one time step to the next

Specifically, given an observed network , make the assumption that
is independent of

Thus a sequence of network observations has the property that:

Y t Y t

Y 1, … , Y t−2

Pr(Y 2, Y 3, … , Y t|Y 1) = Pr(Y t|Y t−1)Pr(Y t−1|Y t−2) … Pr(Y 2|Y 1)

20 / 55

https://projecteuclid.org/euclid.ejs/1276694116

TERGM: Discrete time model
With this assumption in mind we just need to choose a form for the
conditional PDF of

 can be expressed through an ERGM distribution, which then
gives us what is referred to as a TERGM:

P(Y t|Y t−1)

Y t|Y t−1

Pr(Y t|θ, Y t−1) =
exp(θT g(Y t, Y t−1,))

k

21 / 55

TERGM: Block-diag visualization
TERGM is essentially estimated through an ERGM with the dependent
variable modeled as a block-diagonal matrix (such as below)

Constraints are put on the model such that cross-network edges in the off-
diagonal blocks are prohibited

22 / 55

btergm Package
The btergm package has been developed by Leifeld, Cranmer, &
Desmarais (2018) to estimate longitudinal networks using TERGM

Package provides two functions to estimate a TERGM, one using a
pseudolikelihood (btergm) and the other using MCMC-MLE (mtergm)

23 / 55

https://www.jstatsoft.org/article/view/v083i06

Running a TERGM
We are going to run a TERGM on the longitudinal alliance network, and
will employ the following specification:

edges: density term
edgecov(war): list of matrices where cross-sections denote war
edgecov(contiguity): matrix of distances between countries
absdiff(polity): Absolute difference between polity of and
absdiff(cinc): Absolute difference between cinc of and
gwesp(.5, fixed = TRUE): Geometric weighted triangle term

i j
i j

24 / 55

Running a TERGM

library(btergm)

tergmFit <- btergm(

 ally ~ edges +

 edgecov(war) + edgecov(contiguity) +

 nodecov('polity') + absdiff("polity") +

 nodecov('cinc') + absdiff("cinc") +

 gwesp(.5, fixed = TRUE)

)

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

ally (row) 50 50 50 50 50 50 50 50 50 50

ally (col) 50 50 50 50 50 50 50 50 50 50

war (row) 50 50 50 50 50 50 50 50 50 50

war (col) 50 50 50 50 50 50 50 50 50 50

contiguity (row) 50 50 50 50 50 50 50 50 50 50

contiguity (col) 50 50 50 50 50 50 50 50 50 50

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10

maximum deleted nodes (row) 0 0 0 0 0 0 0 0 0 0

maximum deleted nodes (col) 0 0 0 0 0 0 0 0 0 0

remaining rows 50 50 50 50 50 50 50 50 50 50

remaining columns 50 50 50 50 50 50 50 50 50 50

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
25 / 55

Results

summary(tergmFit)

Estimate Boot mean 2.5% 97.5%

edges -5.69586158 -5.69973953 -5.8424 -5.4809

edgecov.war[[i]] -0.07515258 -0.07292465 -0.3130 0.1482

edgecov.contiguity[[i]] 2.54540447 2.54635512 2.4943 2.6080

nodecov.polity -0.00027339 -0.00027453 -0.0064 0.0057

absdiff.polity 0.01865488 0.01875071 0.0143 0.0235

nodecov.cinc -1.42023487 -1.43086995 -2.1052 -0.8640

absdiff.cinc 26.96999913 27.00237695 26.1670 27.7765

gwesp.fixed.0.5 2.24553096 2.24742783 2.1249 2.3382

26 / 55

Duque (2018)
The DV is diplomatic ties, dipl_ties:

#Clear your memory and unload `btergm` as it clashes with `network`:

detach("package:btergm", unload=TRUE)

data("duqueData")

class(dipl_ties)

[1] "list"

length(dipl_ties)

[1] 8

class(dipl_ties[[1]])

[1] "data.frame"

27 / 55

The Dependent Variable
we can see that dipl_ties is currently a list of data.frames. Let's convert it
into a list of networks.

library(statnet)

for (i in 1:8) {

dipl_ties[[i]]<-as.network(as.matrix(dipl_ties[[i]]))

}

class(dipl_ties[[1]])

[1] "network"

28 / 55

Use networkDynamic for Visualizing the
Netwokrk

diplDyn = networkDynamic(network.list=dipl_ties, vertex.pid='vertex.n

Get an error that need vertex.pid (persistent identifiers), as our networks are
not of equal size.

29 / 55

Try Again

#Define network pids:
for (i in 1:8) {

set.network.attribute(dipl_ties[[i]], 'vertex.pid','vertex.names')

}

#Takes 5 min to run:
diplDyn = networkDynamic(network.list=dipl_ties, vertex.pid='vertex.n

diplDyn

NetworkDynamic properties:

distinct change times: 9

maximal time range: 0 until 8

Includes optional net.obs.period attribute:

Network observation period info:

Number of observation spells: 1

Maximal time range observed: 0 until 8

Temporal mode: discrete

Time unit: step

Suggested time increment: 1

Network attributes:

vertices = 194

directed = TRUE
30 / 55

Quick snapshots

par(mfrow = c(1,2))

plot(

 network.extract(diplDyn, at = 1),

 main = "1970", displaylabels = T)

plot(

 network.extract(diplDyn, at = 6),

 main = "2005", displaylabels = T)

Note: cannot use coordinates, because networks are not of equal size, include
different actors.

31 / 55

Quick snapshots

32 / 55

What Have We Learned?
Networks of embassies are dense.

Some states host very few embassies.

Note: network graphs of dense networks are not very esthetically pleasing
or informative.

33 / 55

Descriptive analyses
tsna enables us to quickly calculate some basic descriptive statistics such as
the density of a graph:

library(tsna)

tSnaStats(diplDyn, "gden") # Changes in graph density

Time Series:

Start = 0

End = 8

Frequency = 1

Series 1

[1,] 0.2050836

[2,] 0.2368542

[3,] 0.2169688

[4,] 0.2145924

[5,] 0.2195870

[6,] 0.1851018

[7,] 0.1902708

[8,] 0.2099215

[9,] NA

34 / 55

Descriptive analyses
Can also examine transitivity over time:

tSnaStats(diplDyn, "gtrans") # Changes in graph transitivity

Time Series:

Start = 0

End = 8

Frequency = 1

Series 1

[1,] 0.4830388

[2,] 0.4953440

[3,] 0.5264074

[4,] 0.5159558

[5,] 0.5269708

[6,] 0.4841114

[7,] 0.4875437

[8,] 0.5132955

[9,] NA

35 / 55

Descriptive analyses
The tErgmStats enables us to calculate changes in ergm terms over time:

tErgmStats(diplDyn, "~ edges+triangle")

Time Series:

Start = 0

End = 8

Frequency = 1

edges triangle

0 3655 100235

1 5153 190717

2 5314 203523

3 5597 215072

4 5870 238736

5 6165 236593

6 6618 270378

7 7380 336926

8 0 0

36 / 55

Duque (2018)
Popularity hypothesis: High-status states should receive more recognition
simply because of their position in the social structure, rather than because of
the possession of status attributes (2-instars).

Reciprocity and transitivity: A state’s existing relations should influence the
state’s ability to achieve status (mutual and triangle).

Homophily: States should recognize states that have similar values and
resources as them (absdiff).

37 / 55

#Contiguity:
class(contig)

[1] "list"

length(contig)

[1] 8

class(contig[[1]])

[1] "data.frame"

dim(contig[[1]])

[1] 134 134

contig[[1]][1:3,1:3]

2 20 40

2 0 1 0

20 1 0 0

40 0 0 0

Dyadic Covariates
Contiguity (contig) and alliances (allies) are time-varying edge-level
covariates. We must make sure that they are stored as lists of matrices.

38 / 55

#Allies:
class(allies)

[1] "list"

length(allies)

[1] 8

class(allies[[1]])

[1] "data.frame"

dim(allies[[1]])

[1] 134 134

allies[[1]][1:3,1:3]

2 20 40

2 0 1 0

20 1 0 0

40 0 0 0

Allies

39 / 55

Dyadic Covariates
It looks like allies and contig are currently stored as lists of data.frames.
We must convert them to lists of matrices.

for (i in 1:8) {

contig[[i]]<-as.matrix(contig[[i]])

allies[[i]]<-as.matrix(allies[[i]])

}

40 / 55

Now set up DV with vertex and dyadic attributes
Our node-level covariate, polity$dem_dum must be defined as a vertex
attribute in each of the dipl_ties networks.

#Define Dem as a vertex attribute for each year of dipl_ties (didn't
 set.vertex.attribute(dipl_ties[[1]],"dem",polity$dem_dum[polity$yea

 set.vertex.attribute(dipl_ties[[2]],"dem",polity$dem_dum[polity$yea

 set.vertex.attribute(dipl_ties[[3]],"dem",polity$dem_dum[polity$yea

 set.vertex.attribute(dipl_ties[[4]],"dem",polity$dem_dum[polity$yea

 set.vertex.attribute(dipl_ties[[5]],"dem",polity$dem_dum[polity$yea

 set.vertex.attribute(dipl_ties[[6]],"dem",polity$dem_dum[polity$yea

 set.vertex.attribute(dipl_ties[[7]],"dem",polity$dem_dum[polity$yea

 set.vertex.attribute(dipl_ties[[8]],"dem",polity$dem_dum[polity$yea

dipl_ties[[1]] %v% "dem"

[1] 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

[38] 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[75] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

[112] 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0

dipl_ties[[2]] %v% "dem"

[1] 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

41 / 55

Specify the Model:

library(btergm)

#This runs for 5 min:
tergm_Duque<-btergm(dipl_ties ~ edges + istar(2) + ostar(2) + mutual

 absdiff("dem")+

 +nodeicov("dem")+

 +edgecov(allies)

 +edgecov(contig),

 R=1000)

summary(tergm_Duque)

42 / 55

Run the Model
Estimate Boot mean 2.5% 97.5%

edges -5.377882 -5.405644 -5.6133 -5.1253

istar2 0.028279 0.028712 0.0267 0.0313

ostar2 0.029487 0.030022 0.0266 0.0340

mutual 2.485567 2.482407 2.3500 2.5956

triangle 0.011750 0.011628 0.0103 0.0127

absdiff.dem -0.287938 -0.289257 -0.3656 -0.2207

nodeicov.dem -0.204423 -0.195365 -0.2515 -0.1246

edgecov.allies[[i]] 1.205762 1.220685 1.1238 1.3205

edgecov.contig[[i]] 1.765076 1.765720 1.5732 2.0623

43 / 55

Results

44 / 55

Temporal Terms
delrecip(mutuality = FALSE, lag = 1): checks for delayed
reciprocity. For example, if node is tied to node at , does this lead
to a reciprocation of that tie back from to at ? If mutuality = TRUE
is set, this extends not only to ties, but also non-ties. The lag argument
controls the size of the temporal lag: with , reciprocity over one
consecutive time period is checked. Note that as lag increases, the number
of time steps on the dependent variable decreases.

memory(type = "stability", lag = 1): controls for the impact of a
previous network on the current network. Four different types of
memory terms are available: positive autoregression (type =
"autoregression") checks whether previous ties are carried over to the
current network; dyadic stability (type = "stability") checks whether both
edges and non-edges are stable between the previous and the current
network; edge loss (type = "loss") checks whether ties in the previous
network have been dissolved and no longer exist in the current network;
and edge innovation (type = "innovation") checks whether previously
unconnected nodes have the tendency to become tied in the current
network.

j i t = 1
i j t = 2

lag = 1

45 / 55

Temporal Terms Cont'd
timecov(x = NULL, minimum = 1, maximum = NULL, transform =

function(t) t): checks for linear or non-linear time trends with regard
to edge formation. Optionally, this can be combined with a covariate to
create an interaction effect between a dyadic covariate and time in order
to test whether the importance of a covariate increases or decreases over
time. In the default case, edges modeled as being linearly increasingly
important over time. By tweaking the transform function, arbitrary
functional forms of time can be tested. For example, transform = sqrt (for
a geometrically decreasing time effect), transform = function(x) x^2 (for a
geometrically increasing time effect), transform = function(t) t (for a
linear time trend) or polynomial functional forms (e.g., 0 + (1 t) + (1 t^2))
can be used.

46 / 55

Example with Time Vars
#This runs for 5 min:
tergm_Duque1<-btergm(dipl_ties ~ edges + istar(2) + ostar(2) + mutual

 absdiff("dem")+

 +nodeicov("dem")+

 +edgecov(allies)+

 +edgecov(contig)+

 timecov(),

 R=1000)

summary(tergm_Duque1)

47 / 55

Example with Time Vars
Estimate Boot mean 2.5% 97.5%

edges -4.915580 -4.944023 -5.2673 -4.5906

istar2 0.029973 0.030279 0.0283 0.0333

ostar2 0.031485 0.031775 0.0289 0.0353

mutual 2.428539 2.424032 2.2767 2.5464

triangle 0.011518 0.011492 0.0102 0.0126

absdiff.dem -0.298055 -0.300189 -0.3669 -0.2392

nodeicov.dem -0.122282 -0.130947 -0.2013 -0.0506

edgecov.allies[[i]] 1.199983 1.217104 1.0998 1.3312

edgecov.contig[[i]] 1.837357 1.828172 1.6100 2.1092

edgecov.timecov1[[i]] -0.126189 -0.127274 -0.2050 -0.0802

48 / 55

Your Turn
Re-specify the model to account for delayed reciprocity and stability. Estimate
your new model.

49 / 55

Your Turn 1
1. Set up smoke and drink as vertex attributes to the friendship network.

2. Estimate a temporal ergm that models friendships as a function of

drinking and smoking behaviors,
homophily (people make friends with those with similar drinking and
smoking habits),
reciprocity (why?)
triad closure (why?)
popularity

3. Add temporal terms to model stability and delayed reciprocity.

50 / 55

Bayesing ERGM (BERGM)
Paper: Caimo & Friel (2011)
Bergm on CRAN
Vignette

51 / 55

https://arxiv.org/pdf/1007.5192.pdf
https://cran.r-project.org/web/packages/Bergm/index.html
https://www.jstatsoft.org/article/view/v061i02

ego-ERGM
Paper: Salter-Townshend & Murphy (2016)

52 / 55

https://www.tandfonline.com/doi/full/10.1080/10618600.2014.923777?casa_token=OW--9OnTYVQAAAAA:rZoEcB6rP28SRir4MK3xK8l-URnKY18PyRsXy09nxPgemy3Oh_-vm9A8ynAchlWdXy5Z9ERt1sYs

Separable temporal ERGM (STERGM)
Paper: Krivitsky & Handcock (2012)
tergm on CRAN
Vignette

53 / 55

https://arxiv.org/pdf/1011.1937.pdf
https://cran.r-project.org/web/packages/tergm/
https://cran.r-project.org/web/packages/tergm/vignettes/STERGM.pdf

Hierarchical Exponential-Family Graph Model (HERGM)
Paper: Schweinberger & Handcock (2015)
hergm on CRAN
Vignette

54 / 55

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12081
https://cran.r-project.org/web/packages/hergm/index.html
https://www.jstatsoft.org/article/view/v085i01

Multilevel ERGM
Paper: Wang et al. (2016)

55 / 55

https://www.researchgate.net/profile/Emmanuel_Lazega2/publication/301266001_General_Conclusion/links/5a88026ca6fdcc6b1a3b606d/General-Conclusion.pdf#page=130

