
Advanced Network AnalysisAdvanced Network Analysis

Latent Distance ModelLatent Distance Model

Shahryar Minhas [s7minhas.com]Shahryar Minhas [s7minhas.com]

1 / 321 / 32



What are we missing?

Homophily: "birds of a feather flock together"
Stochastic equivalence: nothing as pithy to say here, but this model
focuses on identifying actors with similar roles

Now we'll start to build on what we have so far and find an expression for :γ

yij ≈ βTXij + ai + bj + γ(ui, vj)

2 / 32



Network dependencies

Dependence among the ties in network data is the defining feature that
makes networks so interesting and challenging to handle inferentially.

Possible Approaches:

Latent variable models: This is what we've been doing this week with the
SRM, SBM, and today LDM. Goal of these models is to use a lightly
supervised approach to fit out the dependencies.

ERGMs/SAOMS: Next week, you'll go over ERGMs, which try to do
something similar at the graph level by adding in explict terms for
transitivity and reciprocity.

Key differences are:

Does not require the detailed theory to specify an ERGM.
Will not exhibit degeneracy issues.
Drawback: Cant directly test the effect of transitivity at the graph level.

3 / 32



Homophily

Dependence A recurrent finding across network domains and disciplines is
that nodes that are alike on salient dimensions are more likely to interact.

Examples:

Individuals of the same race are more likely to be friends.
Legislators of similar ideological leaning are more likely to collaborate.
Countries with similar governing systems are more likely to form military
alliances.
People of the same gender are more likely to start businesses together.

The LDM offers a method to analyze and account for homophily along
multiple dimensions, without measuring any of the homophilous attributes.

4 / 32



Basic setup

Let each node be represented by a  dimensional vector,
 of "latent" attributes.

Define  as the Euclidean distance between the latent attributes of node
 and node .

Then the probability of an edge from  to  is

where 

 controls overall density of the network and the  models who connects
to whom.

Key Innovation: attributes are inferred through estimation.

k
z = {z1, z2,… , zk}

dij
i j

dij =
⎷

k

∑
h=1

(z(i)
h

− z
(j)
h
)2

i j

pij = logit−1 (β0 − dij)

logit−1(x) = 1
1+exp(−x)

β0 z

5 / 32



Step 1

6 / 32



Step 2

7 / 32



Step 3

8 / 32



Common extensions

Adding in covariates

 is measured and not inferred
 gives the change in log odds (in the binary case)

Accounting for node-level sociality

 is the sender effect' of(i)`
 is the reciever effect' of(j)`

Can be accomodated to examine various distribution types

Normal: 

Poisson: 

pij = logit−1 (β0 + β1xij − dij)

xij
β1

pij = logit−1 (β0 + β1xij + αi + ηj − dij)

αi

ηj

β0 + β1xij + αi + ηj − dij
λij = exp[β0 + β1xij + αi + ηj − dij]

9 / 32



Beyond homophily

Homophily constitutes the motivating process for the LSM. However, it can
accommodate many other network properties.

Implicit Transitivity: The structure of the latent space model implies
transitivity, due to the triangle inequality... . If  is likely to tie
to  and  is likely to tie to  then  is likely to tie to .

Symmetry and Reciprocity: If  is high because  is low, then  will also
be high.

Preferential Attachment: Latent space can represent tendency towards
popularity by placing more popular nodes at central positions.

dij < dik + djk i
k j k i j

pij dij pji

10 / 32



Latent distance model

(Hoff et al. 2002; Krivitsky et al. 2009; Sewell & Chen 2015)

Each node  has an unknown latent position

The probability of a tie from  to  depends on the distance between them

Nodes nearby one another are more likely to have a tie, and will likely
have similar ties to others

Software packages:

CRAN: latentnet (Krivitsky et al. 2015)
CRAN: VBLPCM (Salter-Townshend 2015)

i

ui ∈ Rk

i j

Pr(Yij = 1|ui,uj) = α− |ui − uj|

11 / 32

https://cran.r-project.org/web/packages/latentnet/index.html
https://cran.r-project.org/web/packages/VBLPCM/index.html


Latent Distance Model: Estimation Process

1. Model Setup:
Each node  has a latent position 
Distance between nodes: 

Probability of tie: 
 controls overall network density

i ui ∈ Rk

dij = |ui − uj|
P(Yij = 1|ui,uj) = logit−1(α− dij)

α

12 / 32



Likelihood Function

The likelihood of observing the network given latent positions:

Where:

 is the set of all latent positions
 is the observed network

L(u,α|Y ) =∏
i<j

P(Yij = 1|ui,uj)Yij(1 − P(Yij = 1|ui,uj))1−Yij

u
Y

13 / 32



Interpreting the Likelihood Function in Distance
Models

The likelihood function is trying to answer the question:

"How probable is our observed network given our current guess about node
positions and overall connectivity?"

Intuitive breakdown:

1. For each pair of nodes:

If they're connected, how likely is that given their distance?
If they're not connected, how likely is that given their distance?

2. Multiply all these probabilities together.

3. The result tells us how well our current node positions explain the
observed network.

4. We want to find node positions that make our observed network as likely
as possible.

5. This process helps us uncover hidden spatial relationships between nodes
that best explain the network structure we see.

14 / 32



Estimation Approaches: Maximum Likelihood
Estimation (MLE)

Objective: Maximize  or equivalently, 

Process:

1. Define the log-likelihood function:

1. Use optimization algorithms (e.g., gradient descent, Newton-Raphson) to
find  and  that maximize this function

2. Compute gradients: 

L(u,α|Y ) logL(u,α|Y )

logL(u,α|Y ) =∑
i<j

[Yij log(logit−1(α− |ui − uj|))+

(1 − Yij) log(1 − logit−1(α− |ui − uj|))]

u α

=∑
j≠i

(Yij − logit−1(α− |ui − uj|))
∂ logL
∂ui

ui−uj

|ui−uj|

=∑i<j(Yij − logit−1(α− |ui − uj|))
∂ logL
∂α

15 / 32



Estimation Approaches: Maximum Likelihood
Estimation (MLE) Cont'd

Challenges:

High-dimensional:  parameters for  nodes in  dimensions
Non-convex: Multiple local optima possible
Computational complexity:  operations per iteration

Strategies:

Multiple random initializations to avoid local optima
Use of stochastic gradient descent for large networks
Dimensionality reduction techniques as preprocessing

O(nk) n k

O(n2)

16 / 32



Estimation Approaches: Bayesian Estimation

1. Specify priors:

For latent positions: , often multivariate normal
For intercept: , often normal or uniform

2. Define the posterior distribution: 

3. Use MCMC methods to sample from this posterior:

Metropolis-Hastings algorithm
Gibbs sampling (if conditional distributions are available)
Hamiltonian Monte Carlo for more efficient sampling in high
dimensions

p(u)
p(α)

p(u,α|Y ) ∝ L(u,α|Y ) ⋅ p(u) ⋅ p(α)

17 / 32



Estimation Approaches: Bayesian Estimation Cont'd

Advantages:

Provides uncertainty quantification for estimates
Can incorporate prior knowledge
Handles missing data and model extensions more naturally

Challenges:

Computationally intensive
Requires careful tuning of MCMC algorithms
Assessing convergence can be non-trivial

18 / 32



Estimation Process: MCMC in Detail

1. Initialization:

Generate random starting values for  and 
Often use MLE estimates or spectral embedding as starting points

2. For each iteration : a. Update :

For each node :

Propose new position  (e.g., ,

where )

Compute acceptance ratio: 

Accept  with probability 

b. Update :

Propose new 
Compute acceptance ratio similar to above
Accept  with probability 

u α

t u

i

u∗
i
∼ q(u∗

i
|u(t−1)

i
) u∗

i
= u(t−1)

i
+ ϵ

ϵ ∼ N(0,σ2I)

r = ⋅
p(u∗

i |Y ,u(t−1)
−i ,α(t−1))

p(u(t−1)
i |Y ,u(t−1)

−i ,α(t−1))

q(u(t−1)
i

|u∗
i
)

q(u∗
i |u

(t−1)
i )

u∗
i

min(1, r)

α

α∗ ∼ q(α∗|α(t−1))

α∗ min(1, r)

19 / 32



Estimation Process: MCMC in Detail Cont'd

1. Convergence assessment:

Monitor trace plots of parameters
Gelman-Rubin statistic for multiple chains

2. Post-processing:

Discard burn-in period
Thin samples if necessary
Compute posterior means, credible intervals, etc.

Challenges:

Tuning proposal distributions for efficient mixing
Dealing with label switching (identifiability issues)
High autocorrelation in samples for some parameters

20 / 32



Model Extensions

1. Covariates: 

2. Node-specific effects: 

: sender effect for node 
: receiver effect for node 

3. Different distance metrics: e.g., Euclidean, Manhattan, Mahalanobis

P(Yij = 1|ui,uj,xij) = logit−1(α+ β⊤xij − dij)

P(Yij = 1|ui,uj) = logit−1(α+ ai + bj − dij)

ai i
bj j

21 / 32



Challenges and Considerations

Identifiability: Latent positions are unique up to rotation, reflection, and
translation
Dimensionality: Choosing appropriate  (typically 2 or 3 for visualization)
Computational complexity: Scales poorly with network size
Model comparison: Use information criteria (AIC, BIC) or cross-validation

k

22 / 32



Interpreting Results

Visualize latent space: Plot nodes in 2D or 3D space
Examine distances: Interpret proximity in latent space as similarity
Predictive checks: Compare observed network statistics to those from
model-generated networks

23 / 32



Kirkland (2012): North Carolina
Legislators

Kuh et al. (2015): Discerning prey
and predators from food web

LDM for low dim representations of homophily

24 / 32



Apply LDM to trade

We're going to use the latentnet package to run our first latent distance
model
First step is to format our data:

library(latentnet)

library(intergraph)

# first step lets create network object

load('tradeExampleData.rda')

yGraph = igraph::graph.adjacency(Y, 

  mode='directed',

  weighted=TRUE,

  diag=FALSE

  )

# need to convert to network graph object,

# while preserving weighted edge structure

yNet = intergraph::asNetwork(yGraph)

list.edge.attributes(yNet)

## Warning: `graph.adjacency()` was deprecated in igraph 2.0.0.

## ℹ Please use `graph_from_adjacency_matrix()` instead.
## This warning is displayed once every 8 hours.

` f f ()`

25 / 32



Run LDM

The latentnet package belongs to the statnet suite, so it has tons and
tons of documentation and tutorials
The vignette by Krivitsky & Handcock (2008) is a great place to start.

y.var<-sd(c(Y), na.rm=TRUE)

lsEucl = ergmm(

  yNet ~ euclidean(d=2), 

  family='normal',

  fam.par=list(

    prior.var=4*sd(c(Y), na.rm=TRUE),

    prior.var.df=2 # certainty of the prior, higher more certain

    ) )

26 / 32

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552185/


LDM MCMC Convergence

Similar to the ergm package, we will want to evaluate convergence:

mcmc.diagnostics(lsEucl)

27 / 32



Pulling out nodal positions

From the LDM, we can pull out the positions of actor in a euclidean latent
space:

zPos = summary(lsEucl)$'pmean'$Z

head(zPos)

##              [,1]        [,2]

## [1,]  0.137887152  0.06491966

## [2,]  0.004919287  0.01391376

## [3,]  0.005987010  0.01375857

## [4,] -0.238257197 -0.01536262

## [5,]  0.005789981  0.01425025

## [6,]  0.005802527  0.01382764

28 / 32



Lets visualize the results

To visualize the results, we'll just use igraph and for the layout will provide
the estimated positions of actors from the LDM:

plot(yGraph, 

  layout=zPos,

  vertex.color='grey', 

  vertex.label.color='black',

  vertex.size=V(yGraph)$size,

  vertex.label.cex =.75,

  edge.color='grey20',

  edge.width=E(yGraph)$weight,

  edge.arrow.size=.2,

  asp=FALSE

  )

29 / 32



Lets visualize the results

30 / 32



Lets jitter

Lets jitter the points slightly (don't ever actually do this):

zPosJitter = zPos+matrix(rnorm(length(zPos),0,.02),ncol=2)

plot(yGraph, 

  layout=zPosJitter,

  vertex.color='grey', 

  vertex.label.color='black',

  vertex.size=V(yGraph)$size,

  vertex.label.cex =.75,

  edge.color='grey20',

  edge.width=E(yGraph)$weight,

  edge.arrow.size=.2,

  asp=FALSE

  )

31 / 32



Lets jitter

32 / 32


